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ABSTRACT 

The oceans remain one of Earth's most enigmatic frontiers, with approximately 75% of the world's 

oceans still unmapped to modern standards.  To overcome this, interpolation serves as the primary 

method for creating seamless coverage from incomplete coverage hydrographic data sets and is 

essential for creating a seamless digital bathymetric model (DBM) compiled from sparse 

bathymetric datasets and set-line spacing surveys. While methods for quantifying the uncertainty 

in depth measurements are well-researched, interpolation introduces unqualified depth 

uncertainties. This study aims to estimate and characterize these uncertainties which are essential 

to nautical charting, and navigational safety, and important in many other fields. 

Organized into two source data scenarios, the research focuses on uncertainties arising from 

randomly sampled data and set-line surveys. It employs three widely recognized deterministic 

interpolation methods—Linear, Inverse Distance Weighting (IDW), and Spline— across five 

testbeds that vary in slope and roughness. The goal is to identify the interpolation method with the 

lowest uncertainty and unravel the relationships between interpolation uncertainty and three 

ancillary parameters (distance to the nearest measurement, slope, and roughness) for estimating 

interpolation uncertainty. 

By sampling complete seafloor coverage sonar depth data at different densities and line spacings, 

the study interpolates across entire testbed areas using the chosen methods. Uncertainty is 

calculated by comparing interpolated depths against the true depths for independent points.  The 

resulting uncertainties are analyzed statistically and spatially to assess consistency across 

interpolation methods and determine the interpolation method that yields the least interpolation 

uncertainty. Linear regression and machine learning techniques (neural networks and random 



xx 
 

forest) are used to model the relationship between these uncertainties and ancillary parameters to 

estimate uncertainty. 

Evaluation across the five testbeds, encompassing both random sampling and set-line spacing 

scenarios, reveals the following: 1) Spline performs better than Linear and IDW in estimating 

depths from a purely scientific perspective; however, 2) differences among the interpolation 

methods are not statistically significant and minimal from an operational standpoint; 3) sampling 

density, line spacing, and spatial scales impact uncertainty; 4) roughness is the most important 

parameter and distance the least important; 5) relationships between ancillary parameters and 

uncertainty are weak though statistically significant.  

The findings of this work suggest the presence of unaccounted-for factors shaping uncertainty or 

indicate a strong random component within interpolation uncertainty yet lay a foundational 

understanding for improving the estimate of uncertainty in DBMs within operational settings. 

Future research recommendations involve exploring supplementary predictors to enhance the 

predictive capacity of ancillary parameters. Additionally, innovative approaches such as spectral 

analysis for uncertainty estimation hold promise in advancing methodologies within this domain. 
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CHAPTER 1 : INTRODUCTION 

The Earth's oceans, constituting approximately 71% of its surface (Weatherall et al. 2015), remain 

one of our planet's last great unknowns. Essential for sustaining life, climate regulation, and 

economic activities, oceans remain a vast reservoir of resources and wealth (Mayer et al. 2018). 

Surprisingly though, the surfaces of Mars, Venus, and the Earth’s Moon are mapped at a higher 

spatial resolution than the seafloor (Smith 2004), where individual depth measurements can exhibit 

data gaps spanning hundreds of kilometers (Smith and Sandwell 1997). Digital bathymetric models 

(DBMs) are continuous representations of the seafloor that are derived from depth measurements 

and are commonly stored in a raster data format comprising a matrix of same-sized square cells, 

with each cell representing the average depth of the area contained within that cell (Amante and 

Eakins 2016, Jakobsson et al. 2019). Other depth representations (shallow, deep, or nodal depths) 

are also employed based on application needs. 

With 75% of the world’s oceans unmapped to modern standards (Seabed 2030 2023), a 

cursory glance at the available global DBMs (e.g., The General Bathymetric Chart of the Oceans 

(GEBCO) (Mayer et al. 2018), the Global Multi-Resolution Topography (GMRT) (Ryan et al. 

2009)) and regional DBMs (e.g., the International Bathymetric Chart of the Arctic Ocean (IBCAO) 

(Jakobsson et al. 2020), the European Marine Observation and Data Network (EMODnet) (Schaap 

and Schmitt 2020)) may provide the false impression that the seafloor bathymetry of the oceans is 

largely known at high resolution. Although incorporating data derived from the traditional 

sounding techniques of the lead line, single-beam echo sounders (SBES), and modern high-

resolution multibeam echo sounders (MBES), seabed models largely rely on interpolation and 

altimetry-derived data (Weatherall et al. 2015). 
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The National Oceanic and Atmospheric Administration’s (NOAA) National Bathymetric 

Source (NBS) project is currently creating DBMs for the United States from the best available 

data, aimed at the creation of next-generation nautical charts while also providing support for 

modeling, industry, science, regulation, and public curiosity (Rice et al. 2023). Consequently, 

interpolation becomes an important step, often required to fill data gaps among sparse bathymetric 

datasets, creating a comprehensive nationwide model of the seafloor. Data gaps can be the result 

of survey design or survey oversight and can span meters to kilometers between survey 

measurements. Given this reliance on interpolation, the precision of applications utilizing 

bathymetry hinges significantly on the accuracy and associated uncertainties introduced by the 

interpolation method. Indeed, while various sources contribute to the overall uncertainty, the 

interpolation process emerges as a predominant factor, potentially exerting the most substantial 

influence on the accuracy of diverse applications.  

As with any scientific measurement, the uncertainty associated with interpolated 

bathymetry is crucial for many applications, but particularly in nautical charting and ensuring the 

safety of navigation. This becomes crucial in the context of maritime accidents, as highlighted by 

Kastrisios and Ware (2022). Knowing how deep an area is without the knowledge of quality and 

source of the reported depth makes the depth information incomplete and, consequently, less 

useful, and even dangerous. This underlines the importance of bathymetry quality, forming a vital 

part of hydrography's Greenaway stool alongside depth and its source (Figure 1) (NOAA 2020). 

A precise estimate of uncertainty enhances navigation safety by mitigating the challenge of 

assigning a representative and useful category zone of confidence (CATZOC) (IHO S-57 2014) to 

areas without full seafloor bathymetric coverage. It also aids in optimizing shipping routes and 

enhances survey planning with associated cost savings. 
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Figure 1: Greenaway stool of Hydrography (NOAA 2020) 

Despite the widespread use of DBMs, the nature of the inherent uncertainty associated with 

interpolation in these models remains largely unexplored, holding broad implications across 

academic, commercial, and potentially life-saving domains. Estimating DBM uncertainty 

contributes to various fields, including research in climate change, stream-flow, sediment 

transport, soil-landscape modeling, and commercial interests such as shipping route optimization 

and resource extraction. Hazard modeling, encompassing tsunami inundation and hurricane storm-

surge inundation, relies on DBMs developed through interpolation methods (Eakins and Taylor 

2010), contributing to the creation of flood maps and evacuation routes. Consequently, estimating 

and effectively communicating the uncertainty inherent in these models and flood maps to the 

public can potentially mitigate future human losses. 

Despite the critical importance of comprehending the nature of uncertainty in interpolated 

bathymetric models, the ocean mapping field lacks comprehensive research on estimating and 

characterizing interpolation uncertainty. In light of this gap, this study aims to identify the 

deterministic interpolation method that produces the lowest interpolation uncertainty and, 

importantly, accurately estimate and characterize interpolation uncertainties in DBMs. Moreover, 

this will be done within the context of operational settings. The investigation involves assessing 

the correlation between interpolation uncertainties and various ancillary parameters — distance to 
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the nearest known/actual measurement, seabed slope, and roughness — across multiple 

geomorphological testbeds. Building upon the groundwork of (Amante & Eakins 2016), this 

research delves into evaluating the strength of the relationship of these three parameters to 

interpolated bathymetry uncertainty. Furthermore, it explores the practicality of leveraging such 

relationships for predicting uncertainty during survey execution. The study adopts a 

comprehensive approach, examining the impact of seafloor morphology, data scarcity, spatial 

resolution, and spatial scales on uncertainty. This holistic exploration aims to provide a nuanced 

understanding of the multifaceted dynamics involved in characterizing uncertainty in interpolated 

bathymetry. 

The aim of this work is in part to establish the deterministic interpolation method that 

produces the lowest interpolation uncertainty but, more importantly, to explore methods for 

estimating uncertainty from these methods within bathymetric datasets in operational settings. 

Therefore, the focus is on characterizing uncertainty from diverse interpolation methods to offer 

optimal insights in operational settings. The study delves into three common deterministic 

interpolation techniques that can be employed operationally, i.e., Linear, Spline, and inverse 

distance weighting (IDW) with a comprehensive explanation provided in the methodology section.  

Addressing these research gaps of improving the estimate and characterization of 

interpolation uncertainty and identifying the optimal interpolation method are not only particularly 

important for better filling the bathymetric gaps but also significant to the entire hydrographic 

community at large for the safety of navigation, shipping route optimization, and survey planning 

and associated cost savings. It is also of great relevance to the many ongoing NOAA data-driven 

projects such as the National Bathymetric Source Program, Precision Navigation, and Office of 

Coast Survey Hydrographic Health Model that drives Survey Planning and Prioritization which 
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are the cornerstones of safer navigation, resilient coastal communities and ecosystems, and a 

stronger blue economy. 

For terminology consistency and clarity in this study, we designate depth measurements 

from the NOAA BlueTopo’s (NOAA OCS BlueTopo 2023) non-interpolated surface as “true 

depth”, despite any uncertainty associated with these measurements. Three terms, interpolation 

uncertainty, residual, or interpolation deviation, can describe the difference between interpolated 

depths and measured depths. While the difference among them is acknowledged, the term 

"interpolation uncertainty" is adopted herein. Furthermore, in the context of this work, 

"operational" refers to the efficient generation of bathymetric products through a data-driven 

workflow from extensive national datasets, incorporating accurate hydrographic quality metrics of 

uncertainty in a timely manner. 

The remainder of this work is organized in the following manner:  

Chapter 2 discusses the problems, questions, and objectives of this research work. 

Chapter 3 provides general background information for this research work including 

bathymetric data acquisition methods, hydrographic survey design techniques, related works, 

nautical charting uncertainty standards, and the study area. 

Chapter 4 explores the estimation and characterization of uncertainty in sparse 

hydrographic datasets, 

Chapter 5 focuses on similar aspects in the context of set-line spacing surveys, and lastly, 

Chapter 6 encapsulates conclusions and provides recommendations for future studies and 

implementations. 
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CHAPTER 2 : RESEARCH QUESTIONS AND OBJECTIVES 

In light of the extensive portion of the ocean yet to be mapped to modern standards, as discussed 

in the Introduction, interpolation is usually required to create a DBM of the seafloor from the 

available datasets derived from traditional sounding techniques of the lead line, single-beam echo 

sounders (SBES), and modern high-resolution MBES set-line spacing surveys, and full seabed 

coverage surveys. With the widespread application of DBMs derived from interpolation methods 

across scientific and industrial domains and recognizing the significance of comprehending the 

intrinsic uncertainty in these DBMs, this study investigates the estimation and characterization of 

interpolation uncertainty in interpolated bathymetry and is structured into two primary 

components: 1) sparse bathymetric datasets addressed in chapter 4 and 2) set-line spacing 

hydrographic surveys addressed in chapter 5. 

2.1 Research Questions 

Based on this background, the key questions addressed in this study are outlined as follows:  

(1) Which deterministic interpolation method is most accurate for bathymetry, yielding the 

lowest interpolation uncertainty? 

(2) How efficiently can these ancillary parameters, i.e., distance to the nearest measurement, 

seabed slope, and roughness, be used to estimate and characterize interpolation uncertainty 

in bathymetric models in an operational setting? 

(3) To what extent can we improve the estimated uncertainty by employing Machine Learning 

techniques to combine these parameters? 

(4) How adeptly can we characterize interpolation uncertainties to investigate the impact of 

seafloor morphology, data paucity, spatial resolution, and spatial scales? 
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2.2 Research Objectives 

To answer the research questions, the following objectives are defined in this study: 

(1) Determine the deterministic interpolation method that produces the lowest interpolation 

uncertainty in bathymetry. 

(2) Investigate the relationship between interpolation uncertainty and ancillary parameters, 

such as distance to the nearest measurement, seabed slope, and roughness, for estimating 

and characterize uncertainty in bathymetric models. 

(3) Explore the potential improvements in uncertainty estimation by integrating Machine 

Learning techniques to combine these parameters. 

(4) Characterize interpolation uncertainties to examine the impact of seafloor morphology, 

data scarcity, spatial resolution, and spatial scales on uncertainty estimation. 
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CHAPTER 3 : BACKGROUND INFORMATION 

3.1 Data Acquisition/Bathymetric Methods 

Rapid technological advancements are transforming the landscape of ocean mapping, empowering 

users with unprecedented capabilities through modern hydrographic systems. Traditionally, lead-

lines were employed for depth collection, where lead weights attached to a calibrated line were 

thrown from the side of a boat until it reached the bottom (Bongiovanni 2018). The depth would 

then be read from the line and the depth and location would be recorded on the survey sheet. This 

method, however, was time-consuming, tedious, and susceptible to locational errors caused by 

wind and currents (van der Wal and Pye 2003). To account for these errors, depths were typically 

rounded down (making them shoaler) to the nearest fathom (van der Wal and Pye 2003, Calder 

2006). 

Beyond measurement inaccuracies, lead-line techniques suffered from limited 

measurement frequency and density, capturing only individual points along the vessel track and 

leaving the intervening seafloor unmeasured and unknown. Despite these limitations, lead-lines 

persisted as the primary depth measurement method until the 1930s when sonic echosounders were 

introduced, revolutionizing depth collection with faster and continuous methods (Hawley 1931, 

Adams 1942).  

The mid-1900s witnessed advancements in geospatial positioning, transitioning from 

sextant measurements to electronic positioning in the 1950s and satellite positioning in the 1990s. 

These improvements helped shape the performances of both the deep-water multibeam systems in 

the 1980s and the shallow-water multibeam systems in the 1990s (Wong et al. 2007). The profiling 

echosounder significantly increased hydrographic surveying capabilities by collecting a constant 

data stream of depths recorded directly under a boat as it moves along a track or course. The 
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invention of side-scan sonar (SSS) and multibeam echo sounders (MBES) led to different types of 

survey designs. 

3.2 Hydrographic Survey Design Techniques 

According to the NOAA Hydrographic Survey Specifications and Deliverables (HSSD) 2022, 

there are four classifications of coverage: Object Detection Coverage, Complete Coverage, Set 

Line Spacing, and Track line (transit and reconnaissance) (NOAA OCS 2022): 

(1) The object detection coverage is assigned for critical under keel clearance areas and may 

be accomplished with either a 100% bathymetric bottom coverage with multibeam sonars 

with object detection multibeam developments (i.e., 50 cm grid resolution in 0-20 m depth 

range) of contacts and features or a 200% side scan sonar coverage with concurrent 

multibeam bathymetry collection. 

(2) Complete Coverage may be accomplished with either a 100% bathymetric bottom coverage 

with multibeam sonars with complete coverage multibeam developments (i.e., 1 m grid 

resolution in 0-20 m depth range) of contacts and features or 100% side scan sonar 

coverage with concurrent multibeam bathymetry collection with complete coverage 

multibeam developments (i.e., 1 m grid resolution in 0-20 m depth range) of contacts and 

features. 

(3) Set Line Spacing is assigned when acquiring bathymetric data in areas too shallow for 

efficient full bottom coverage bathymetry or too hazardous for use of equipment. Set line 

spacing may be accomplished with a single beam or multibeam and it is highlighted that 

this technique is used when complete coverage cannot be achieved due to associated costs 

of survey. 



10 
 

(4) Track line survey operations can be classified as either Transit, which is intended to be 

used simply as an opportunity to collect data while a vessel transits from location A to 

location B; or Reconnaissance, which is intended to be used when the intended survey 

products will require a higher level of accuracy than Transit specifications will produce, 

but a traditional survey consisting of systematic line spacing or full bottom coverage is not 

required. 

Chapter 5 of this thesis focuses on quantifying the uncertainty within the interpolated areas 

resulting from gaps in bathymetric data caused by the design of set-line spacing. An expanded 

methodology, known as the skunk stripping technique, involves the simultaneous deployment of 

MBES or SBES and SSS. While this technique also leads to gaps in bathymetric coverage, it 

effectively ensures a comprehensive search across the entire area and facilitates the detection of 

features in alignment with the CATZOC requirements using SSS. It should be noted that a SSS 

collects data from larger swaths than MBES but is not capable of measuring depths. The exceptions 

to this rule are phase-measuring bathymetric sonars (PMBSs) that concurrently collect bathymetric 

and side-scan imaging from one system. However, PMBS systems are not frequently used in 

hydrography since their extremely large raw datasets require extensive manual filtering and have 

greater potential for errors. Traditional SSSs are more prevalent in the hydrographic community 

and are primarily used to identify possible dangers to navigation that require additional 

investigation. 

One of the advantages of the set-line spacing and/or skunk stripping technique(s) lies in 

their ability to survey expansive areas efficiently by reducing time and costs without compromising 

navigational safety. They are particularly effective in shallow water and hazardous environments. 

Importantly, the set-line spacing approach is commonly applied in areas with relatively flat 
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seafloors, low navigational risk, and existing satellite-derived/lidar bathymetry data where bottom 

detection is challenging due to water clarity or extinction depth (Neff and Wilson 2018, NOAA 

OCS 2022). This underscores the necessity for interpolation and, more crucially, the accurate 

quantification of uncertainty in these interpolated regions to provide users with confidence in the 

data. 

Additionally, these hydrographic survey designs are based on line planning that meets the 

desired accuracy criterion of the survey. According to the NOAA Field Procedure Manual (NOAA 

OCS 2021), line plans for data acquisition fall into various categories, including Mainscheme, 

Holidays, Crosslines, Developments, Bathymetric Splits, Target Files, and Special Circumstances. 

In the context of this study, the applicable and defined categories are Mainscheme, referring to the 

primary survey data acquired during a survey project, and Crosslines, used to identify systematic 

data problems by comparing them with Mainscheme data. 

3.3 Previous Works 

3.3.1 Interpolation methods 

Interpolation is a mathematical process of predicting the values of unknown locations based on 

surrounding measured values (Burrough and McDonnell 1998). Interpolation requires some basic 

assumptions about the surface: that the surface is continuous and smooth, the sampled points are 

representative of the overall characteristics of the surface and that measured values at neighboring 

data points are highly correlated with the value at the unknown point (Liu et al. 2007). There are 

numerous interpolation methods, e.g., IDW, Spline, Linear, Natural Neighbor, and Kriging, and 

all are based on the same assumption that bathymetry sampled at disparate points is positively 

spatially autocorrelated. The notion of spatial autocorrelation is largely attributed to Tobler’s 1st 

law of geography, i.e., “Everything is related to everything else, but near things are more related 
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than distant things” (Tobler 1970). That is, the depth at one location is more similar to depths 

nearby than the depths far away.  

Interpolation methods can be classified as any combination of geostatistical or 

deterministic, local or global, and exact or inexact (Li and Heap 2008) based on the assumptions 

and features used to estimate the depths of unknown areas using known measurements. Depending 

on the method selected, the different mathematical algorithms used in each interpolator produce 

divergent DEMs, even when developed from the same source data (Aguilar et al. 2005, Erdogan 

2009). Geostatistical methods, such as Kriging, use both mathematical and statistical functions to 

estimate depths, while deterministic methods, such as Spline, IDW, and triangulated irregular 

network (TIN), use the measurements directly and mathematical functions only to predict 

unknown values (Childs 2004). Geostatistical methods are typically more computationally and 

time-intensive in order to accurately quantify the statistical relationship among depths compared 

to deterministic methods, which have simpler parameters and are computationally faster (Grayson 

and Blöschl 2000, Castiglioni et al. 2009).  

In the context of uncertainty estimation, the geostatistical and deterministic interpolation 

techniques have an important distinction. The geostatistical Kriging method utilizes the 

semivariogram to estimate unknown elevations and to also predict their uncertainty (i.e., variance). 

A semivariogram captures the spatial autocorrelation of the terrain by plotting the elevation 

variance of each pair of measurements as a function of the distance among the measurements, and 

then a mathematical model (e.g., Linear, spherical, exponential) is fit to the semivariogram. 

Conversely, the deterministic interpolation techniques predict depth values using the data directly 

rather than mathematical functions, but, notably, they provide no estimates of their vertical 

uncertainty. 
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Local interpolation methods use a subset of measurements surrounding the location to be 

predicted and global methods use all available measurements (Burrough and McDonnell 1998). 

Local methods are preferred when the seafloor structure is driven by local variation, and global 

methods should be used when the seafloor structure is driven by a trend over a larger area.  Lastly, 

exact interpolators respect the known measurements by creating a surface that retains the values 

at the measured locations of measurements. This contrasts with inexact interpolators, which are 

not constrained by the depth measurement values at those locations (Burrough and McDonnell 

1998). Inexact interpolators can add additional uncertainty to the DBM by creating surfaces that 

diverge from the measurements (Hare et al. 2011), but can be useful when there is already large 

measurement uncertainty. For nautical charting purposes, exact interpolators seem to be a more 

fitting choice as they ensure that depths are not overestimated at known locations. This is of utmost 

importance for navigational safety. 

The interpolation method employed in a particular situation is chosen based on the data 

quality, sampling distribution, terrain characteristics, computational resources, and application 

requirements. Each interpolation method has particular mathematical constraints for predicting 

unknown values (Amante 2012). Bathymetry interpolation methods have been extensively studied, 

including both deterministic and geostatistical techniques (Legleiter and Kyriakidis 2006, 

Merwade et al. 2006, Merwade 2009, Vetter et al. 2011, Šiljeg et al. 2014, Curtarelli et al. 2015, 

Amante and Eakins 2016, Panhalakr and Jarag 2016, Chowdhury et al. 2017, Henrico 2021). 

However, these studies exhibited no consensus regarding which interpolation method performs the 

best in generating bathymetric surfaces (Wu et al. 2019). This is no surprise since the performance 

of an interpolation method depends on factors like datasets and their properties, seafloor 

characteristics, study areas, etc.  This study is an attempt to determine if there is an optimal, global 
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interpolation method for generating DBMs. The deterministic interpolators align well with the goal 

of this research which is to generate data-driven products from large national datasets in 

operational settings. Hence, the three deterministic spatial interpolation methods that are 

investigated in this work for improved uncertainty quantification are Spline, Linear, and Inverse 

Distance Weighting (IDW).  

IDW interpolation is a spatial interpolation technique used to estimate values at unsampled 

locations based on the known values at sampled locations (Liu et al. 2007). In IDW, each sampled 

point's influence on the interpolation at a target location is determined by its distance from the 

target location raised to a selected power — closer points exert more influence than distant ones 

(Caruso and Quarta 1998). The method assigns weights inversely proportionally to distances from 

the target location, with the power parameter controlling the rate of influence decrease. A higher 

power yields a quicker decline, resulting in a less smooth surface with more detail, while a lower 

power favors points farther away, creating a smoother surface with less detail. Control over the 

interpolated surface's characteristics is achieved through fixed or variable search radii, limiting 

input points for each interpolated cell calculation (Guo et al. 2010).  

Spline interpolation, a mathematical method, estimates values between known data points 

by fitting a piecewise-defined polynomial function, typically a cubic Spline, to the dataset 

(Bojanov et al. 1993). This technique employs a series of polynomial functions, or "Splines," 

within distinct intervals, creating a smoother and more flexible curve that seamlessly passes 

through all given data points. The resulting curve is continuous, with both its first and second 

derivatives matching at the points where the polynomial segments connect. This characteristic 

ensures a smooth transition between intervals, effectively capturing more variations in the data. 
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Linear interpolation is a simple method used to estimate values between two known data 

points determined to be immediate neighbors by assuming a linear relationship between them. This 

technique operates under the assumption that the change in the variable being interpolated is 

constant across the interval between two adjacent data points regardless of the distance between 

them. The process involves determining the equation of the straight line connecting the known 

points and then calculating the interpolated value based on the proportion of the distance along 

this line of the point for which a value is desired. Essentially, Linear interpolation assumes a linear 

trend between data points and fills in values within the given range by drawing a straight line 

between neighboring points.  

3.3.2 Interpolation Uncertainty Estimation 

This research builds on previous studies that investigated the estimation of uncertainty in 

interpolated bathymetric models (Jakobsson et al. 2002, Elmore et al. 2012, Amante and Eakins 

2016, Amante 2018, Bongiovanni 2018). Studies have found that the accuracy of all interpolation 

techniques is related to the sampling density and distribution of measurements (Aguilar et al., 

2005; Amante, 2018; Amante & Eakins, 2016; Anderson et al., 2005; Chaplot et al., 2006; 

Erdogan, 2009; Erdoğan, 2010; Guo et al., 2010; MacEachren & Davidson, 1987). In these 

previous studies, sampling density referred to a percentage of original measurements (MacEachren 

and Davidson 1987, Aguilar et al. 2005, Anderson et al. 2005, Guo et al. 2010, Alcaras et al. 2022) 

or a count of measurements per area (Chaplot et al. 2006, Erdogan 2009, 2010) or a percentage of 

DBM grid cells constrained by depth measurements (Amante and Eakins 2016, Amante 2018). 

This final definition, cell sampling density, is the terminology and approach this study will adopt. 

Previous studies have also found that the accuracy of all interpolation techniques is related to 
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terrain characteristics (Aguilar et al. 2005, Erdogan 2009, 2010, Guo et al. 2010, Amoroso et al. 

2023).  This will also be a focus of this study. 

Calder (2006) and Bongiovanni et al. (2018) used the geostatistical Kriging interpolation 

method which gives an estimate of uncertainty; however, Kriging requires that underlying 

assumptions such as stationarity, and isotropy be satisfied. Furthermore, due to the complex, highly 

computational, and time-consuming nature of Kriging, the method is not ideal for the intended 

purpose of generating data-driven products from large national datasets in operational settings. 

Amante (2018) and Amante & Eakins (2016) investigated the accuracy of interpolated 

DBMs using different deterministic methods of interpolation (Spline, IDW, and TIN) by 

examining the relationship between interpolation deviations from measured depths, sample 

density, and distance to the nearest depth measurement. Their predictive models of the cell-level 

uncertainty were derived as a function of cell sampling density and interpolation distance on a 

testbed of varying terrain. Their equations used only a single parameter (distance to the nearest 

depth measurement) and did not incorporate terrain characteristics such as slope and curvature.  

This constrained the applicability of their results to areas with similar terrain as the study area, to 

avoid under- or over-estimating the interpolation uncertainty. The research undertaken herein is 

unique because it is tailored towards an operational setting and will advance these previous studies 

by incorporating terrain characteristics, specifically slope, and roughness, into the cell-level 

uncertainty equation. In addition to using machine learning techniques to better explore the 

relationship between interpolation uncertainty and the ancillary parameters, this investigation is 

based on five testbeds. This is an effort to improve the characterization of uncertainty in 

interpolated bathymetric datasets. 
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3.4 Nautical Charting Uncertainty Standards 

The International Hydrographic Organization (IHO) established the S-44 IHO Standards for 

Hydrographic Surveys (IHO S-44 2020) in 1968 to define data quality requirements for charting 

purposes, with subsequent updates reflecting technological advancements (IHO S-44 2020). 

Recent shifts towards electronic navigational products, notably electronic navigational charts 

(ENCs), have prompted a re-evaluation of how data uncertainty and quality are communicated to 

mariners. The Category of Zones of Confidence (CATZOC) levels in the S-57 IHO Transfer 

Standard for Digital Hydrographic Data (IHO S-57 2014) and the Quality of Bathymetric Data 

(QoBD) in the new S-101 ENC Product Specification (IHO S-101 2022) outline these parameters. 

Every chart is a mosaic of polygons / sectors, each assigned a CATZOC that represents the 

vertical and horizontal uncertainty and completeness of the collected data of the underlying survey 

(see Table 1). The CATZOC concept offers a consistent methodology of assessing data quality by 

end users. 
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Table 1: The International Hydrographic Organization (IHO) S-57 Category of Zones of 

Confidence (CATZOC) Levels. (IHO S-57 2014). 

CATZOC 
LEVEL 

POSITIONAL 
ACCURACY 

DEPTH 
ACCURACY SEAFLOOR COVERAGE 

A1 +/-5m + 5% 
depth 0.5m + 1% depth 

Full area search undertaken. Significant 
seafloor features detected and depths 
measured. 

A2 +/-20m 1m + 2% depth 
Full area search undertaken. Significant 
seafloor features detected and depths 
measured. 

B +/-50m 1m + 2% depth 
Full area search not achieved; uncharted 

features hazardous surface navigation 
are not expected but may exist. 

C +/-500m 2m + 5% depth Full area search not achieved; depth 
anomalies may be expected. 

D Worse than 
CATZOC C 

Worse than 
CATZOC C 

Full area search not achieved, large 
depth 

anomalies may be expected. 

U Unassessed - The quality of data has yet to be assessed 

This study aims to facilitate the CATZOC classification in areas with incomplete 

bathymetric seafloor coverage. This includes the a posteriori CATZOC classification of 

interpolated datasets from sparse and set-line spacing bathymetry as well as during set-line spacing 

surveys targeted to meet CATZOC level within the constraints of existing resources. Specifically, 

this study addresses the uncertainty metric associated with depth accuracy in CATZOC, excluding 

considerations for seafloor feature detection and factors like expected feature size or seabed 

undulations. Thus, CATZOC classification improvement through better estimation of interpolation 

uncertainty is generally limited to CATZOC B unless hydrographic offices’ full seabed coverage 

and feature detection requirements for CATZOC A1 and A2 are met using SSS. In regions like the 

United States, where skunk stripping is employed to attain seafloor coverage and target detection, 
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the attainment of CATZOC A1 or A2 is hindered by the depth accuracy aspect of the CATZOC. 

This study also aims to provide insights to inform CATZOC classification under such 

circumstances. 

3.5 Study Area/Dataset 

The study investigated five distinct testbeds located within U.S. waters, each representing a unique 

seafloor morphology (Figure 2). The choice of testbeds was made through a dual assessment 

approach — qualitative evaluation via visual inspection and quantitative analysis detailed in the 

subsequent section. These testbed models encompass varying combinations of slope and roughness 

characteristics, facilitating a thorough analysis of factors that may impact interpolation uncertainty. 

The categorized testbeds are outlined as follows: 

• Testbed 1: Characterized by low slope and low roughness, 

• Testbed 2: Characterized by low slope and high roughness, 

• Testbed 3: Characterized by high slope and low roughness, 

• Testbed 4: Characterized by high slope and high roughness, and 

• Testbed 5: Shares high slope and high roughness attributes with Testbed 4 but is unique 

due to its high spatial data resolution. Testbed 5 is considered "special" in the context of 

this study and is used to explore the impact of spatial data resolution on uncertainty 

estimation. 

For a detailed overview of the testbeds, including their respective locations and key 

attributes, refer to Table 2. 
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Figure 2: Testbeds. See text and Table 2 for details. 
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Table 2: Summary of testbeds. NAD83 - North American Datum of 1983 and UTM - Universal 

Transverse Mercator 

Test

bed 
Name 

Morpho-

logy 
Locality 

Depth 

Range 
BlueTopo Tiles 

NAD83 

UTM 

Zone 

Resolution 

(m) (m) 

1 Flat 

Low 
roughness 
and low 

slope 

Gulf of 
Mexico, 

LA 
-26 – -52  

BF2G62KP_20230505 
16N 8 

BF2G72KP_20230505 

2 Rough 

High 
roughness 
and low 

slope 

Florida 
Main 

Channel, 
FL 

-17 – -28 

  

BH4ST58G_20230607 

17N 8 
BH4ST58H_20230607 

BH4SV58G_20221125 

BH4SV58H_20221125 

3 Slopy 
High slope 

and low 
roughness 

Massa-
chusetts 
Bay, MA 

-60 – -200 BF2JK2MD_20230614 19N 8 

4 
Rough 

and 
Slopy 

High slope 
and high 

roughness 

Gulf of 
Maine, 

ME 
-12 – -102 

BF2JK2MH_20230626 
19N 8 

BF2JK2MG_20230418 

5 Special 
High slope 
and high 

roughness 

Gulf of 
Maine, 

ME 
-10 – -51 BF2JK2MD_20230614 19N 4, 8 & 16 

 

The NOAA BlueTopo website served as the primary source for bathymetric data. The 

BlueTopo repository offers both collected/measured and interpolated bathymetry. Great care was 

taken to exclusively utilize data that had not been subjected to interpolation in this study. Our 

approach involved a thorough review of NOAA National Centers for Environmental Information 

bathymetric attributed grids (BAGs), with only multibeam echo sounder data. These grids were 

scrutinized to identify areas of interest based on specific morphologies. Subsequently, the selected 

regions intersecting with BlueTopo tiles were downloaded, ensuring the use of non-interpolated 
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data with sufficient size, depth, and relatively high spatial resolution (4m and 8m) tailored to this 

study's analytical requirements. The non-interpolated BlueTopo tiles are grids of appropriate 

spatial resolution using the average depth derived from the raw high resolution multibeam echo-

sounder data. As noted in the introductory section of this thesis, these non-interpolated BlueTopo 

depths are employed as the “true depth”.   

Testbed 1, featuring a flat seafloor, spans 10km-by-10km and is located approximately 

36km south of Barataria Pass, Louisiana, in the Gulf of Mexico, as depicted in Figure 2d. The 

water depth ranges from 26m to 52m, with geographical coordinates between UTM eastings 

231111m and 241111m and UTM northings 32066338m and 3216633m (NAD83 UTM Zone 

16N). The Gulf of Mexico has a complex geological history shaped by various tectonic, 

sedimentary, and hydrological processes spanning millions of years. 

Testbed 2, characterized by a rough seafloor, spans 10km-by-10km and is located 

approximately 33km east of Jacksonville in the Florida main channel, as presented in Figure 2c. 

The water depth ranges from 17m to 28m and is situated between UTM eastings 489167m and 

499167m and UTM northings 3357558m and 3367558m (NAD83 UTM Zone 17N). The general 

geological setting of northeastern Florida, including Jacksonville, is marked by a combination of 

volcanic activity and marine sedimentation during the early Ordovician Period (Lane, 1994). 

Testbed 3, featuring a Slopy seafloor, spans 10km-by-10km in Massachusetts Bay, 

approximately 28km east of Eastern Point and 7km south of Jefferys Ledge, as illustrated in Figure 

2b. It ranges from 60m to 200m in water depth, with geographic coordinates between UTM 

eastings 383256m and 393256m and UTM northings 4706455m and 4716455m (NAD83 UTM 

Zone 19N). Jeffreys Ledge and its surroundings likely owe their origin and morphologic features 
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to a combination of late Neogene fluvial erosion, Quaternary glaciations, and late-Pleistocene and 

Holocene marine processes (Uchupi and Bolmer 2008). 

Testbed 4, characterized by a Rough and Slopy seafloor, spans a 10km-by-10km area in 

the Gulf of Maine, approximately 12km offshore in the vicinity of Bigelow Bight, as depicted in 

Figure 2a. Its depth range is from 12m to 102m, and it is geographically situated between UTM 

eastings 380978m and 390978m and UTM northings 4781382m and 4791382m (NAD83 UTM 

Zone 19N). The Gulf of Maine is a geologically complex area with diverse bathymetric structures 

resulting from a complex interplay of marine deposition, subsequent river-based deposition, and 

alterations by glacial erosion and deposition (Backus and Bourne 1987). 

Testbed 5, also featuring a rough and Slopy seafloor but with higher resolution than other 

testbeds, spans 5km-by-5km in the Gulf of Maine, approximately 8km offshore in the vicinity of 

Bigelow Bight, as shown in Figure 2e. The water depth ranges from 10m to 51m, with geographic 

coordinates between UTM eastings 379270m and 384266m and UTM northings 4792478m and 

4797274m (NAD83 UTM Zone 19N). Testbed 5 is unique in providing resolutions of 4m, 8m, and 

16m, enabling an exploration of the impact of spatial resolution on uncertainty quantification. 

Notably, Testbed 5 shares the same geology as Testbed 4. 

3.6 Terrain Characterization 

Aguilar et al. (2005) identified seabed morphology as the paramount factor influencing 

interpolation quality. Likewise, Guo et al., 2010 associated interpolation uncertainty with the 

variability in terrain elevation. In the context of this study, terrain characteristics, specifically slope 

and roughness, assume centrality in assessing the impact of seabed morphology on uncertainty 

estimation. Although curvature and aspect were also initially considered, they are omitted from 

this work as preliminary analysis indicated that they exhibited no correlation with interpolation 
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uncertainty. The following sections give an in-depth explanation of what slope and roughness are 

and how they have been calculated in this work.  

3.6.1 Slope 

Slope denotes the maximum rate of depth change within a moving analysis window (Burrough 

and McDonnell, 1998). It is defined as a function of gradients in the X direction (fx) and Y 

direction (fy): 

Slope = arctan (√(𝑓𝑥)2 +  (𝑓𝑦)2 )         (1) 

To calculate slope (or other terrain parameter such as roughness) for each pixel, an analysis 

window is effectively moved across the raster DBM surface such that each pixel in turn becomes 

the central or subject pixel on which calculations are based (refer to Figure 3). The resulting 

calculations are still reported at the original pixel size; it is merely the window size or ground area 

considered in the analysis which varies. This generalization allows the parameter to be analyzed 

at a range of scales (different odd values of n ≥ 3) (Wilson et al. 2007). This study investigated 

three window sizes — 3 pixels by 3 pixels, 5 pixels by 5 pixels, and 7 pixels by 7 pixels, see the 

spatial scale section of this chapter. Figure 3 presents a raster grid, showing a numbering system 

for cells in an analysis window where Z is the depth of a given raster cell. The central cell is the 

origin of the local coordinate system (x, y) and the positions relative to this are denoted by 

subscripts. To simplify notation, we use N = (n − 1)/2 for any n × n analysis window where n may 

be any odd integer. These are shown in full for a 3 × 3 window. Larger values of n indicate that 

more cells (larger area) are considered in the analysis. 
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Figure 3: An n x n analysis window for a raster grid. 

In this study, Horn’s finite difference method (Horn, 1981) was employed to calculate fx 

and fy of the central point of the analysis window (x, y = 0). Horn’s method utilizes convolution 

kernels tailored to each moving analysis window to estimate a value for a subject pixel. By 

calculating the weighted sum of neighboring elevation values, Horn's method provides slope 

approximations in both the east-west (X) and north-south (Y) directions of the analysis window. 

Using the notation in Figure 3 for a 3×3 analysis window, equations 1 and 2 provide Horn’s 

formulae for calculating fx and fy: 

𝑓𝑥 =  
(𝑍−1,1− 𝑍1,−1+2(𝑍−1,0− 𝑍1,0)+ 𝑍−1,1− 𝑍1,1 )

8𝐿
         (2) 

𝑓𝑦 =  
(𝑍1,1− 𝑧1,−1+2(𝑍0,1− 𝑍0,−1)+ 𝑍−1,1− 𝑍−1,−1 )

8𝐿
         (3) 

Here, L represents the data cell size or data resolution, which is crucial for normalizing the 

gradients with respect to the grid spacing, ensuring that the calculated slope values are consistent 

and independent of the specific resolution or scale of the depth data.  
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3.6.2 Roughness 

Roughness is defined as the variability or irregularity in elevation—capturing both highs and 

lows—within a sampled terrain unit. It is crucial to precisely define the scale or level at which 

terrain roughness is considered, along with the unit used to measure across a 'window' of scale, as 

various attributes become relevant at different scales (Smith 2014). Consequently, the definition 

of terrain surface roughness is often ambiguous (Fan 2022a). Roughness indices usually rely on a 

quantitative description of specific terrain characteristics changes, such as the degree of local 

undulation, the degree of local folds, or the degree of local abrupt changes(Fan 2022b). In this 

study, roughness is calculated using Equation 4 as defined by Wilson et al. (2007), which computes 

the largest inter-cell difference of a central pixel and its surrounding cells in an n x n rectangular 

neighborhood (refer to Figure 3). 

R(n) = Bmax – Bmin           (4) 

Bmax(n) = maximum Z in n × n window 

Bmin(n) = minimum Z in n × n window 

To ensure the accurate representation of their respective seabed morphologies, the testbeds 

underwent both quantitative assessments for slope and roughness and qualitative assessments 

through visual inspection. The results of this evaluation are presented in Figure 4. 

Figures 4a & 4b showcase the slope and roughness histograms of Testbed 1, respectively, while 

4c & 4d depict the slope and roughness histograms of Testbed 2. In a similar fashion, 4e & 4f 

represent the slope and roughness histograms of Testbed 3, 4g & 4h illustrate the slope and 

roughness histograms of Testbed 4, and finally, Figures 4i & 4j portray the slope and roughness 

histograms of Testbed 5. It is important to note that panels 4e to 4j highlight the 99th percentile of 
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data, plotted to improve visualization and facilitate effective comparisons between the seabed 

morphologies, while panels 4a to 4f were generated using the entire dataset. Comparing the slope 

and roughness values across the testbeds, the histograms demonstrate that the testbeds capture their 

respective morphologies as desired to achieve the goals of this thesis.  
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Figure 4: Histograms depicting the slope and roughness characteristics of the original testbeds’ 
bathymetric datasets. 
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3.7 Spatial Scales 

Spatial scales, in the context of this study which only applies to Chapter 4, refer to the various 

resolutions and sizes at which bathymetric data and terrain characteristics are analyzed (Gustafson 

1998). Terrain attributes vary with scale (Chorley n.d.). Thus, their computation does not result in 

only one true, real fixed value, but in a range of possible values that depend on the resolution of 

the data and the extent of the analysis window (Hengl 2006). The consideration of spatial scales is 

pivotal in understanding how different features manifest at different levels of granularity and how 

this impacts the estimation of interpolation uncertainty. This investigation navigates spatial scales 

by considering analysis window sizes applied in computing terrain characteristics, specifically 

slope and roughness, and by exploring different datasets’ spatial resolutions. The study implements 

three window sizes—3 pixels by 3 pixels, 5 pixels by 5 pixels, and 7 pixels by 7 pixels — utilizing 

the developed algorithms for roughness and Horn’s slope calculation in Python (Horn 1981). 

While the 3-by-3 analysis window was used for most parts of the study (since it is standard window 

in GIS software), the other two sizes are selectively employed to investigate the influence of 

window sizes on uncertainty estimation, specifically on Testbed 4. The impact of spatial resolution 

on interpolation uncertainty was investigated focusing on only Testbed 5. Analyzing bathymetric 

data at various scales provides insights into the influence of local and regional factors on 

interpolation uncertainty, allowing for a better comprehension of how the interaction between 

interpolation uncertainty and ancillary parameters varies with changes in spatial scale. 
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CHAPTER 4 : ESTIMATING AND CHARACTERIZING INTERPOLATION 

UNCERTAINTY IN SPARSE BATHYMETRIC DERIVED DIGITAL BATHYMETRIC 

MODELS USING ANCILLARY PARAMETERS 

4.1 Introduction 

This chapter investigates the characterization and estimation of the uncertainty in DBMs derived 

from sparse archived bathymetric datasets. The interest in interpolating across numerous cells 

arises from the need to fill gaps in sparse hydrographic soundings collected using lead lines and 

single-beam sonar technology. This interpolation between sparse bathymetric soundings is 

typically required for many applications including nautical charting, tsunami propagation, and 

inundation modeling (Hare et al. 2011), etc. Hydrographic offices worldwide face the challenge 

of designating a CATZOC classification for areas having sparse soundings/depths from SBES, 

older technology of MBES, wire drags, and lead line surveys without full seabed coverage.  

4.2 Methods 

The split-sample methodology is employed to simulate a sparse bathymetric data set by randomly 

sampling the testbeds’ depth measurements based on sampling density before interpolation. 

Sampling density in prior studies had varied definitions, including a percentage of original 

measurements (MacEachren and Davidson 1987, Aguilar et al. 2005, Anderson et al. 2005, Guo 

et al. 2010, Alcaras et al. 2022), a count of measurements per area (Chaplot et al. 2006, Erdogan 

2009, 2010), or a percentage of DBM grid cells constrained by depth measurements (Amante and 

Eakins 2016, Amante 2018). This chapter adopts the latter definition utilizing five sampling 

densities of 50%, 25%, 10%, 5%, and 1%.  

Each testbed’s dataset serves as the environmental canvas and is divided into training 

(depths), earmarked for interpolation, and test data, earmarked for uncertainty quantification and 
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error analysis (Figure 5). The split-sample methodology undergoes 10 iterations for each 

interpolation technique, at each of the five sampling densities, and on the five testbeds. The 

deterministic interpolation techniques employed are IDW, Spline, and Linear. The 10 times 

repetition aims to capture the bathymetric variability of each testbed morphology and to prevent 

bias in the estimation of interpolation uncertainty. The choice of 10 iterations considers both 

algorithm processing time and memory usage; 10 iterations were deemed sufficient to fairly 

represent bathymetric variability in a 10km-by-10km area.  

 

Figure 5: Workflow for quantifying interpolation uncertainty in sparse bathymetric datasets. 
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During each split-sample iteration, training depths were gridded using the specified 

interpolation technique. The resulting interpolated raster was then compared, on a cell-by-cell 

basis, to the test depths to quantify interpolation uncertainty. To clarify, interpolation uncertainty 

was determined by taking the absolute value of the difference between the interpolated depths and 

the measured depths. Ancillary parameters, such as the Euclidean distance to the nearest 

measurement for each test cell was generated from the closest cell in the training data set and the 

slope and roughness raster surfaces, were generated from the interpolated DBM after each split-

sample routine (Figure 6). These parameters, compiled from each split-sample routine, along with 

their respective interpolation uncertainties, constituted the datasets prepared for modeling to 

discern the relationship between the parameters and interpolation uncertainties. Notably, the 

analysis to identify the interpolator producing the lowest uncertainty using box and whisker plots 

and descriptive statistics was based on the median of the statistics from the 10 raster surfaces. The 

only exception, which is the spatial distribution of the interpolation uncertainty was based on a 

randomly selected surface from the 10 raster surfaces. 

Figure 5 provides a visual representation of the entire process, illustrating the data 

preparation phase, which involves the random splitting of original data into training and test 

datasets using 50% sampling density. The subsequent steps include interpolation, where various 

interpolation techniques are applied, parameter extraction for modeling, encompassing the 

calculation of slope and roughness from the interpolated DBM and the determination of the 

distance to the nearest measurement from the training data. The final step, modeling and 

evaluation, compares interpolated and test data to quantify interpolation uncertainty, and models 

the relationship between interpolation uncertainty and ancillary parameters, both individually and 

in combination. The model's performance is then evaluated. 
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Figure 6: Testbed 4 measured depth with 50% sampling density (a), training depths (b), IDW 
interpolated depths (c), interpolation uncertainty clipped to 99 percentile (d), generated slope from 
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interpolated depths (e), generated roughness from interpolated depths (f), distance to the nearest 
depth measurement raster (g), and distance to the nearest depth measurement raster (1% sampling 
density), the inner dashed red lines shows the data "buffer" along the border to guide the 
interpolation (h). 

To mitigate potential bias in the analysis, precautionary measures were implemented. 

Specifically, while depth measurements were interpolated across the entire area, the analysis was 

confined to a subset reduced by 12 cells (96m) on each side. This approach aimed to address 

potential edge effects by ensuring that interpolated values near the boundaries of the study area 

were influenced by actual measured depths only, thereby minimizing inaccuracies that could arise 

from extrapolation. This ensured that the edge of the area of analysis had a range of distances to 

the nearest measurement without biasing toward depths along the outermost border of the study 

area (refer to Figure 6h). It also guaranteed accurate slope and roughness values by maintaining 

appropriate window size for calculation. 

Notably, the algorithms for these interpolators were developed in Python such that minimal 

adjustment of interpolation parameters was required to undertake the analysis. This deliberate 

approach aimed to streamline the implementation process and enhance the applicability of the 

developed algorithms thereby eliminating dependence on specific GIS software. Consequently, 

the optimization of interpolation parameters was not within the scope of this work, and the optimal 

IDW parameters identified by Amante and Eakins (2016) were employed. The Python libraries 

were Numpy, Pandas, Matplotlib, GDAL, SciPy, Scikit-learn, Keras, and Statsmodel. Linear and 

Spline interpolations are implemented using the Python SciPy griddata library with “method” set 

to linear and cubic respectively. IDW interpolation is implemented using Scikit Learn Neighbors.  

4.3 Modeling and Analysis 

Linear regression is used to model the relationship between interpolation uncertainty and 

individual parameters, producing the targeted estimated uncertainty. For each testbed, linear 
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regression models are fitted for each of the three ancillary parameters – distance to the nearest 

measurement, slope, and roughness – individually for all sampling densities and interpolation 

techniques. The accuracy of these models is evaluated using the metrics adjusted coefficient of 

determination R2 and root-mean-square error (RMSE) in m. 

Moving beyond individual parameters, the study employs machine learning techniques to 

capture non-linearities, interactions, and hidden relationships among the combined parameters. 

While multivariate regression (MVR) (see Jobson 1991)  and random forest (RF) (see Breiman, 

2001) techniques were initially explored, only Artificial Neural Network (ANN) (see Agatonovic-

Kustrin and Beresford 2000) is utilized in this work due to its improved accuracy. For assessing 

importance of individual variables, this study recognized the computational efficiency of RF's 

feature importance compared to ANN's SHAP (SHapley Additive exPlanations) (see Lundberg 

and Lee 2017) that can be used to identify the most important predictor of interpolation uncertainty. 

The MVRs that included all 2-way and single 3-way multiplicative interactions of the parameters 

were also explored. This investigation revealed that the enhanced performance of ANN was 

attributable to its adept handling of both interactions and non-linearities inherent in the parameters. 

The ANN was implemented in Python using the Keras library with a TensorFlow backend. 

The dataset was split into 70% training data and 30% test data, and standard scaling normalization 

was applied to both sets. The model architecture included an input layer with 10 neurons, a hidden 

layer with five neurons using the Rectified Linear Units (ReLU) activation function (Fred Agarap, 

2018), and an output layer with one neuron employing linear activation for regression tasks. The 

training involved specifying mean squared error (MSE) as the loss function, using the Adam 

optimizer for gradient descent (Kingma and Ba 2014), and monitoring mean absolute error (MAE) 



36 
 

during five epochs of training. The model predicted interpolation uncertainty for the test data, and 

performance was assessed using adjusted R2 and RMSE. 

The RF implementation in Python utilized the Scikit Learn Random Forest Regressor. Data 

preparation included splitting them into training and testing sets and normalizing the features. An 

RF model with 10 decision trees was created and trained on the standardized training data. 

Performance evaluation metrics included adjusted R2 and RMSE. The importance of each 

parameter in the model's prediction was assessed, considering the number of trees in which a 

variable appeared. 

To determine the significance of variables’ contributions, a bootstrap approach was used. 

For computational efficiency and analytical accuracy, a substantial sample of the data, yielding an 

average of 120,000 data points, underwent bootstrapping 500 times. Subsequently, the RF model 

is fitted to each bootstrapped dataset iteratively, totaling 500 repetitions. The variable importance 

values generated by each RF model were aggregated to compute the mean importance and establish 

the 95% confidence intervals. The overall mean importance and 95% confidence intervals of each 

variable were computed by averaging across all sampling densities and interpolation methods. It 

is important to note that a sample of data was used for computational efficiency. Using all the data 

would cause any significant differences to be more significant because frequency distributions 

would narrow, and the degrees of freedom would increase. 

4.4 Validation Technique/Accuracy Assessment 

Two established validation methods for evaluating interpolation accuracy are cross-validation 

(Davis 1987, Tomczak 1998, Erdogan 2009, Amante and Eakins 2016) and the split-sample 

method (Voltz and Webster 1990, Declercq 1996, Lloyd and Atkinson 2002, Amante and Eakins 

2016). This study adopts the split-sample method (see Figure 5), the commonly used method to 
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assess changes in the accuracy of an interpolation technique when using various sampling 

densities. The split-sample method involves dividing the dataset into training and test subsets, 

using the former for interpolation and evaluating performance with the latter. Common statistical 

measures such as RMSE, MAE, bias, and coefficient of determination (R2) are widely employed 

for evaluation (Isaaks and Srivastava 1989, Zar 1999, Li and Heap 2008). RMSE, MAE and R2 

are used in this study in conjunction with other descriptive statistics such as minimum, maximum, 

and median error: 

RMSE = √ 
∑ (𝑍

𝑖
𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑

− 𝑍𝑖
𝑡𝑟𝑢𝑒 )2𝑁

𝑖=1

𝑁
     (5) 

MAE = 
1

𝑁
∑ |𝑍𝑖

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑
−  𝑍𝑖

𝑡𝑟𝑢𝑒|𝑛
𝑖=1      (6) 

R2 = 1 −  
∑ (𝑍𝑖

𝑡𝑟𝑢𝑒− 𝑍𝑖
𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑

)2𝑛
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∑ (𝑍𝑖
𝑡𝑟𝑢𝑒− 𝑍𝑖

𝑡𝑟𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

     (7) 

where zinterpolated is the predicted depth for the i-th pixel, 

ztrue is the true depth from BlueTopo for the i-th pixel, and 

N is the total number of pixels. 

Pairwise t-tests (Ross and Willson 2017) were employed to determine the statistical 

significance of differences in interpolation methods, following an investigation into both 

parametric (ANOVA) and non-parametric (Kruskal-Wallis) techniques. These initial methods 

faced challenges as our datasets violated underlying assumptions, such as data independence, and 

variance homoscedasticity. The pairwise t-tests focused on evaluating differences between 

pairwise interpolation methods' uncertainties and comparing them with zero. The pairwise 

difference distributions were normally distributed and are used to corroborate the findings of t-
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tests. This approach effectively addressed the aforementioned challenges, ensuring a thorough and 

reliable assessment of differences among the interpolation techniques. 

In addition to the statistical assessment, the accuracy of interpolation methods was spatially 

evaluated based on visual inspection to comprehend the spatial distribution of interpolation 

uncertainty. This is an effort to characterize the interpolation uncertainties. 

4.5 Results 

The presentation of results is structured based on testbeds as outlined in the subsequent 

subsections. 

4.5.1 Testbed 1 (Flat Seabed) 

4.5.1.1 Interpolation Methods 

Figure 7 displays the box and whisker plots illustrating the performance of interpolation methods 

across all sampling densities for Testbed 1. Complementing these visualizations, Table 3 provides 

descriptive statistics of interpolation uncertainties at the 99th percentile confidence interval for 

each sampling density and interpolation method. Notably, the interpolation uncertainties of the 

interpolation methods are relatively similar at the same sampling density with Linear interpolation 

performing slightly better than IDW and Spline. It is highlighted that the interpolation uncertainties 

here are in the order of centimeters, attributed to the less complex morphology of Testbed 1. The 

simpler morphology is also a contributing factor to the Linear interpolation method exhibiting the 

lowest uncertainty compared to the other two methods. Table 4 and Figure 8 collectively 

demonstrate that there are no statistically significant differences in the performance of 

interpolation methods at each sampling density. This assertion is supported by the t-test results, 

and the distributions of pair-wise interpolation uncertainty differences centered around zero. 
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Figure 7: Testbed 1 interpolation methods uncertainty comparison at various sampling densities 
using box and whisker, plotted with 99% percentile of data. 
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Table 3: Testbed 1 interpolation uncertainty descriptive statistics at various sampling densities. 

S/N 

Sampling 

density 

(%) Interpolator 

99th  

percentile  

Min  

(m) 

99th  

percentile  

Max 

 (m) 

99th  

percentile  

Median 

Error (m) 

99th  

percentile  

MAE  

(m) 

99th  

percentile  

RMSE 

(m) 

1 1 IDW 0.000 0.179 0.029 0.038 0.051 

2 1 Linear 0.000 0.145 0.019 0.027 0.037 

3 1 Spline 0.000 0.172 0.021 0.031 0.043 

4 5 IDW 0.000 0.114 0.018 0.024 0.032 

5 5 Linear 0.000 0.101 0.014 0.019 0.026 

6 5 Spline 0.000 0.115 0.016 0.022 0.029 

7 10 IDW 0.000 0.095 0.015 0.020 0.026 

8 10 Linear 0.000 0.090 0.013 0.017 0.023 

9 10 Spline 0.000 0.102 0.014 0.019 0.026 

10 25 IDW 0.000 0.079 0.012 0.017 0.021 

11 25 Linear 0.000 0.080 0.011 0.016 0.021 

12 25 Spline 0.000 0.091 0.012 0.017 0.023 

13 50 IDW 0.000 0.071 0.011 0.014 0.019 

14 50 Linear 0.000 0.075 0.010 0.015 0.020 

15 50 Spline 0.000 0.083 0.011 0.015 0.021 
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Table 4: Testbed 1 statistics for pairwise interpolation methods comparison at various sampling 

densities. 

Sampling Density (%) Interpolation Methods t-statistics p-value 

1 
 

Spline and IDW -142.8 0 

IDW and Linear 258.0 0 

Spline and Linear 161.7 0 

5 
 

Spline and IDW -59.6 0 

IDW and Linear 169.2 0 

Spline and Linear 125.3 0 

10 
 

Spline and IDW -3.8 < 0.01 

IDW and Linear 115.4 0 

Spline and Linear 137.6 0 

25 
 

Spline and IDW 43.3 0 

IDW and Linear 50.3 0 

Spline and Linear 135.9 0 

50 
 

Spline and IDW 44.5 0 

IDW and Linear 17.7 < 0.01 

Spline and Linear 99.7 0 
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Figure 8: Histograms showing pair-wise differences of interpolation methods uncertainties for 
Testbed 1. 

4.5.1.2 Spatial Pattern of Interpolation Uncertainties 

Figure 9 illustrates the spatial distribution of interpolation uncertainties of the interpolation 

methods across all sampling densities for Testbed 1. To facilitate comparison, the color bar has 

been standardized across sampling densities and interpolation methods. An intriguing observation 

is that the interpolation uncertainties do not exhibit a random pattern across the testbed with all 
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sampling densities. Instead, they are notably concentrated on the eastern side of the plots, attributed 

to multibeam artifacts (strips) present in the original datasets from BlueTopo (see figure 2a).  

 

Figure 9: Testbed 1 interpolation uncertainty across all sampling densities (columns) and 

interpolation methods (rows), using 99th percentile of data. 
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4.5.1.3 Predictive Models of Interpolation Uncertainties 

Figures 10a&d present the adjusted R2 and RMSE values for the estimated uncertainty for Testbed 

1, assessed in relation to the distance to the nearest measurement across various cell sampling 

densities (1%, 5%, 10%, 25%, and 50%). The adjusted R2 values indicate a weak linear relationship 

between the distance to the nearest measurement and interpolation uncertainty, with all 

interpolation methods performing relatively the same. Additionally, higher sampling densities 

correspond to decreased RMSE values, with Linear interpolation outperforming IDW and Spline. 

Figures 10b&e (Testbed 1) present the adjusted R2 and RMSE values for estimated uncertainty 

based on roughness. A weak relationship intensifies with increased sampling density. Spline 

interpolation attains the highest adjusted R2 but demonstrates the poorest performance in RMSE. 

IDW follows, ranking second based on both R2 and RMSE, while Linear interpolation performs 

the worst in adjusted R2 but performs the best in RMSE. 

Figures 10c&f (Testbed 1) present the adjusted R2 and RMSE values for estimated uncertainty 

based on slope. Similar to roughness, a weak relationship intensifies with increasing sampling 

density. In this case, Spline interpolation again performs best in adjusted R2, while Linear 

interpolation performs the worst in RMSE. 

To investigate the hidden non-linear relationships between the combined parameters and the 

estimated uncertainty, we employed an Artificial Neural Network (ANN). Results indicate that 

combining distance to the nearest measurement, slope, and roughness in a model improves the 

single variable model's performance, albeit with marginal enhancements in both R2 and RMSE 

(Figure 11). Among the interpolation techniques, Spline performs best in R2 but performs the worst 

in RMSE which is corroborated by findings in Figure 10. IDW follows Spline in adjusted R2 and 
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outperforms it in RMSE. Linear interpolation exhibits the lowest adjusted R2 but performs best in 

RMSE.  

In general, the differences in the interpolation uncertainty models’ RMSEs are not substantial from 

an operational perspective because they are in the order of centimeters. Additionally, the 

performance of the uncertainty models improves at higher sampling densities, as evidenced by 

both individual parameter and combined parameters' interpolation uncertainty models. However, 

the disparities in model performance become negligible beyond a 10% sampling density. 

Therefore, 10% emerges as the optimal operational sampling density, representing a 'sweet spot' 

for Testbed 1. This sweet spot denotes the sampling density beyond which higher values do not 

significantly contribute to uncertainty estimation. 

 

Figure 10: Adjusted R2 (a-c) and RMSE (d-f) of the relationship between interpolated uncertainty 
and estimated uncertainty based on distance to nearest measurement, roughness, and slope 
respectively for Testbed 1. 
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Figure 11: Adjusted R2 (a) and RMSE (b) of the relationship between interpolated uncertainty and 
estimated uncertainty based on distance to nearest measurement, roughness, and slope combined 
for Testbed 1. 

Furthermore, the application of the RF machine learning algorithm alongside the bootstrap 

statistical technique reveals that roughness is the most influential predictor ranking as the most 

important in 10 out of 15 instances, with a mean importance level of 45.3% (Table 5). These 

instances stem from the combination of three interpolation methods and five sampling densities. 

Following closely is slope, identified as the most important in five out of 15 instances with a mean 

importance of 46.5%. Conversely, distance to nearest measurement is the least important predictor, 

not appearing as most important in any instance and holding a mean importance of 8.2%. Crucially, 

the bootstrap technique confirms the statistically significant differences in these parameters. 

Table 5: Statistics of the importance of predictors of uncertainty for Testbed 1. 

Statistics/Parameter Distance Slope Roughness 

Mean Importance (%) 8.2 46.5 45.3 

# times of most Important 0 5 10 

95% bootstrap percentile CI of the Importance (7.3,9.6) (42.0,49.9) (41.8,48.9) 
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4.5.2 Testbed 2 (Rough Seabed) 

4.5.2.1 Interpolation Methods 

Figure 12 displays the box and whisker plots illustrating the performance of interpolation methods 

across all sampling densities for Testbed 2. Complementing these visual representations, Table 5 

provides descriptive statistics of interpolation uncertainties at the 99th percentile confidence 

interval for each sampling density and interpolation method. Similar to Testbed 1, the interpolation 

uncertainties of the interpolation methods are relatively the same across the same sampling density. 

However, on Testbed 2, the Spline interpolation performs slightly better than Linear and IDW. 

Furthermore, the interpolation uncertainties here are in the order of centimeters, attributed to the 

less complex morphology of Testbed 2 relative to Testbeds 3 and 4. Table 7 and Figure 13 

collectively show that there are no statistically significant differences in the interpolation methods 

at each of the sampling densities.  

 

Figure 12: Testbed 2 interpolation methods uncertainty comparison at various sampling densities 
using box and whisker, plotted with 99% percentile of data. 
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Table 6: Testbed 2 interpolation uncertainty descriptive statistics at various sampling densities. 

S/N 

Sampling 

density 

(%) Interpolator 

99th  

percentile  

Min  

(m) 

99th  

percentile  

Max 

 (m) 

99th  

percentile  

Median 

Error (m) 

99th  

percentile  

MAE  

(m) 

99th  

percentile  

RMSE 

(m) 

1 1 IDW 0.000 1.113 0.187 0.251 0.335 

2 1 Linear 0.000 0.975 0.126 0.188 0.264 

3 1 Spline 0.000 0.950 0.113 0.173 0.247 

4 5 IDW 0.000 0.611 0.089 0.125 0.170 

5 5 Linear 0.000 0.503 0.054 0.086 0.125 

6 5 Spline 0.000 0.474 0.046 0.076 0.113 

7 10 IDW 0.000 0.469 0.064 0.092 0.126 

8 10 Linear 0.000 0.375 0.038 0.061 0.090 

9 10 Spline 0.000 0.337 0.031 0.052 0.078 

10 25 IDW 0.000 0.319 0.041 0.060 0.084 

11 25 Linear 0.000 0.248 0.025 0.040 0.059 

12 25 Spline 0.000 0.217 0.019 0.033 0.050 

13 50 IDW 0.000 0.234 0.029 0.043 0.060 

14 50 Linear 0.000 0.190 0.020 0.031 0.045 

15 50 Spline 0.000 0.165 0.015 0.025 0.038 
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Table 7: Testbed 2 statistics for pairwise interpolation methods comparison at various sampling 

densities. 

Sampling Density (%) Interpolation Methods t-statistics p-value 

1 
 

Spline and IDW -142.8 0 

IDW and Linear 258.0 0 

Spline and Linear 161.7 0 

5 
 

Spline and IDW -59.6 0 

IDW and Linear 169.2 0 

Spline and Linear 125.3 0 

10 
 

Spline and IDW -3.8 < 0.01 

IDW and Linear 115.4 0 

Spline and Linear 137.6 0 

25 
 

Spline and IDW 43.3 0 

IDW and Linear 50.3 0 

Spline and Linear 135.9 0 

50 
 

Spline and IDW 44.5 0 

IDW and Linear 17.7 < 0.01 

Spline and Linear 99.7 0 
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Figure 13: Histograms showing pair-wise differences of interpolation methods uncertainties for 
Testbed 2. 

4.5.2.2 Spatial Pattern of Interpolation Uncertainties 

Figure 14 shows that the spatial distribution of interpolation uncertainties on Testbed 2 is not 

random. The color bar, standardized for ease of comparison, highlights that areas with higher 

interpolation uncertainties are correlated with high roughness values (see Figure 2b for 

comparison). This correlation points to the influence of seabed roughness on uncertainty patterns. 
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Figure 14: Testbed 2 interpolation uncertainty across all sampling densities (columns) and 
interpolation methods (rows), using 99th percentile of data. 

4.5.2.3 Predictive Models of Interpolation Uncertainties 

Figures 15a&d present the adjusted R2 and RMSE values for estimated uncertainty based on the 

distance to the nearest measurement for Testbed 2. Surprisingly, a very weak relationship is 
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observed, which diminishes with increasing sampling density. Spline interpolation consistently 

outperforms Linear and IDW interpolation in both metrics. 

Figures 15b&e (Testbed 2) present the adjusted R2 and RMSE values for estimated uncertainty 

based on roughness. A weak relationship emerges, intensifying with increased sampling density. 

IDW achieves the highest adjusted R2 but performs the worst in RMSE. Linear and Spline 

interpolations exhibit similar performance levels. 

Figures 15c&f (Testbed 2) depict the adjusted R2 and RMSE values for estimated uncertainty 

based on slope. Similar to roughness, a weak relationship strengthens with increasing sampling 

density. In this case, IDW interpolation again performs best in adjusted R2 and performs the worst 

in RMSE, while Linear and Spline interpolations exhibit similar performance levels. 

To investigate the hidden non-linear relationships, we employed an ANN, revealing marginal 

improvements in both R2 and RMSE (Figure 16). Among interpolation techniques, IDW performs 

the best in R2 but performs the worst in RMSE. Linear and Spline interpolations exhibit similar 

performance levels.  

Much like Testbed 1, the distinctions in RMSE among the interpolation uncertainty models are not 

operationally significant, given that they are on the order of centimeters. Additionally, the 

variations in the performance of uncertainty models become inconsequential beyond a 10% 

sampling density, thereby designating the 10% sampling density as the optimal sampling density 

for Testbed 2.  

Results from the RF analysis coupled with the bootstrap statistical technique reveal that roughness 

emerges as the most influential predictor ranking as the most important in 10 out of 15 instances, 

with a mean importance level of 46.1% (Table 6). It is followed by slope with mean importance 
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of 43.9% and appearing as the most important in five of 15 instances.  Distance to the nearest 

measurement is the least important predictor, with a mean importance of 10%. Importantly, the 

bootstrap technique confirms the statistical significance of the differences in these parameters. 

 

Figure 15: Adjusted R2 (a-c) and RMSE (d-f) of the relationship between interpolated uncertainty 
and estimated uncertainty based on distance to nearest measurement, roughness, and slope 
respectively for Testbed 2. 

 

Figure 16: Adjusted R2 (a) and RMSE (b) of the relationship between interpolated uncertainty and 
estimated uncertainty based on distance to nearest measurement, roughness, and slope combined 
for Testbed 2. 
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Table 8: Statistics of the importance of predictors of uncertainty for Testbed 2. 

Statistics/Parameter Distance Slope Roughness 

Mean Importance (%) 10 43.9 46.1 

# times of most Important 0 5 10 

95% bootstrap percentile CI of the Importance (9.6,10.3) (43.3,44.6) (45.4,46.7) 

 

4.5.3 Testbed 3 (Slopy Seabed) 

4.5.3.1 Interpolation Methods 

Figure 17 displays the box and whisker plots illustrating the performance of interpolation methods 

across all sampling densities for Testbed 3. To complement these visualizations, Table 9 presents 

the descriptive statistics of interpolation uncertainties at the 99th percentile confidence interval for 

each sampling density and interpolation method. The interpolation uncertainties of the 

interpolation methods vary at lower sampling densities with Spline being the best interpolation 

method followed by Linear and IDW. The interpolation uncertainties become relatively the same 

at higher sampling densities, 25% and 50%. At the lower sampling densities, the Spline 

interpolation method performs better than Linear and IDW; and at higher sampling densities, 

Linear interpolation performs the best. Compared to Testbed 1 and 2, the interpolation 

uncertainties here are in the order of meters, attributed to the more complex morphology of Testbed 

3 compared to Testbeds 1 and 2. Importantly, Figure 18 and Table 10 affirm that the observed 

differences in the descriptive statistics and box and whisker plots are not statistically significant. 
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Figure 17: Testbed 3 interpolation methods uncertainty comparison at various sampling densities 
using box and whisker, plotted with 99% percentile of data. 

Table 9: Testbed 3 interpolation uncertainty descriptive statistics at various sampling densities. 

S/N 

Sampling 

density 

(%) Interpolator 

99th  

percentile  

Min  

(m) 

99th  

percentile  

Max 

 (m) 

99th  

percentile  

Median 

Error (m) 

99th  

percentile  

MAE  

(m) 

99th  

percentile  

RMSE 

(m) 

1 1 IDW 0.000 7.852 0.496 0.946 1.547 

2 1 Linear 0.000 4.605 0.267 0.512 0.854 

3 1 Spline 0.000 3.376 0.232 0.402 0.638 

4 5 IDW 0.000 3.470 0.223 0.406 0.656 

5 5 Linear 0.000 1.930 0.148 0.244 0.376 

6 5 Spline 0.000 1.918 0.156 0.250 0.380 

7 10 IDW 0.000 2.571 0.173 0.304 0.486 

8 10 Linear 0.000 1.585 0.126 0.204 0.312 

9 10 Spline 0.000 1.736 0.137 0.221 0.338 

10 25 IDW 0.000 1.825 0.131 0.222 0.349 

11 25 Linear 0.000 1.360 0.105 0.170 0.262 

12 25 Spline 0.000 1.496 0.112 0.184 0.284 

13 50 IDW 0.000 1.436 0.108 0.179 0.277 

14 50 Linear 0.000 1.273 0.093 0.153 0.238 

15 50 Spline 0.000 1.379 0.099 0.165 0.257 
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Table 10: Testbed 3 statistics for pairwise interpolation methods comparison at various sampling 

densities. 

Sampling Density (%) Interpolation Methods t-statistics p-value 

1 
 

Spline and IDW -305.2 0 

IDW and Linear 269.4 0 

Spline and Linear -145.3 0 

5 
 

Spline and IDW -205.6 0 

IDW and Linear 228.5 < 0.01 

Spline and Linear 20.6 0 

10 
 

Spline and IDW -143.4 0 

IDW and Linear 190.1 0 

Spline and Linear 71.0 0 

25 
 

Spline and IDW -82.0 0 

IDW and Linear 129.5 0 

Spline and Linear 73.5 0 

50 
 

Spline and IDW -27.9 < 0.01 

IDW and Linear 69.9 0 

Spline and Linear 63.2 0 
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Figure 18: Histograms showing pair-wise differences of interpolation methods uncertainties for 
Testbed 3. 

4.5.3.2 Spatial Pattern of Interpolation Uncertainties 

Examining Figure 19, the spatial distribution of uncertainties in Testbed 3 reveals a non-random 

pattern. Higher uncertainties are visually correlated with areas of high slope values (see Figure 2c 
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for comparison). This observation underscores the impact of slope characteristics on interpolation 

uncertainty. 

 

Figure 19: Testbed 3 interpolation uncertainty across all sampling densities (columns) and 
interpolation methods (rows), using 99th percentile of data. 
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4.5.3.3 Predictive Models of Interpolation Uncertainties 

Figures 20a&d present the adjusted R2 and RMSE values for estimated uncertainty based on the 

distance to the nearest measurement for Testbed 3. Surprisingly, a very weak relationship 

diminishes with increasing sampling density. Spline interpolation consistently outperforms Linear 

and IDW interpolation in both metrics. 

Figures 20b&e (Testbed 3) present the adjusted R2 and RMSE values for estimated uncertainty 

based on roughness. A moderate relationship intensifies with increased sampling density, showing 

an asymptotic trend at 25%. IDW achieves the highest adjusted R2 but performs the worst in 

RMSE. Linear and Spline interpolations exhibit comparable performance levels. 

Figures 20c&f (Testbed 3) depicts adjusted R2 and RMSE values for estimated uncertainty based 

on slope. Similar to roughness, a moderate relationship intensifies with increasing sampling 

density, showing an asymptotic trend at 25%. In this case, IDW interpolation performs best in 

adjusted R2, while Linear and Spline interpolations exhibit similar performance levels. 

To investigate the hidden non-linear relationships, we employed an ANN, revealing marginal 

improvements in both R2 and RMSE (Figure 21). Among interpolation techniques, IDW performs 

best in R2 but the worst in RMSE. Linear and Spline interpolations exhibit similar performance 

levels.  

Compared to Testbed 1 and 2, the distinctions in RMSE among the interpolation uncertainty 

models might be operationally important, given that they are on the order of meters. In furtherance 

with Testbed 1 and 2, the 10% sampling density appears to be the sweet spot for Testbed 3. 

Results from the RF analysis coupled with the double bootstrap statistical technique reveal that 

roughness emerges as the most influential predictor ranking as the most important in all 15 
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instances, with a mean importance level of 59% (Table 8). Following in importance are slope and 

distance to the nearest measurement, with mean importance levels of 34% and 7%, respectively. 

Notably, distance to the nearest measurement consistently emerges as the least important factor 

across all 15 instances. The observed variations in the results are statistically significant, indicating 

robust differences among the predictors. 

 

Figure 20: Adjusted R2 (a-c) and RMSE (d-f) of the relationship between interpolated uncertainty 
and estimated uncertainty based on distance to nearest measurement, roughness, and slope 
respectively for Testbed 3. 
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Figure 21: Adjusted R2 (a) and RMSE (b) of the relationship between interpolated uncertainty and 
estimated uncertainty based on distance to nearest measurement, roughness, and slope combined 
for Testbed 3. 

Table 11: Statistics of the importance of predictors of uncertainty for Testbed 3. 

Statistics/Parameter Distance Slope Roughness 

Mean Importance (%) 8.2 34.2 57.6 

# times of most Important 0 0 15 

95% bootstrap percentile CI of the Importance (7.4,9.3) (29.7,40.6) (51,62.1) 

 

4.5.4  Testbed 4 Results (Rough and Slopy Seabed) 

4.5.4.1 Interpolation Methods 

Figure 22 displays the box and whisker plots illustrating the performance of interpolation methods 

across all sampling densities for Testbed 4, complemented by the descriptive statistics presented 

in Table 12. The interpolation uncertainties of the interpolation methods vary at lower sampling 

densities with Linear as the best interpolation method followed by Spline and IDW. The 

interpolation uncertainties become relatively the same at higher sampling densities, 25% and 50%. 

At the higher sampling densities, Spline performs the best. Much like Testbed 3, the interpolation 

uncertainties here are in the order of meters, attributed to the relatively complex morphology of 

Testbed 4. Importantly, Figure 23 and Table 13 assert that the differences seen in the box and 

whisker plots and descriptive statistics are not statistically significant.  
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Figure 22: Testbed 4 interpolation methods uncertainty comparison at various sampling densities 
using box and whisker, plotted with 99% percentile of data. 

Table 12: Testbed 4 interpolation uncertainty descriptive statistics at various sampling densities. 

S/N 

Sampling 

density 

(%) Interpolator 

99th  

percentile  

Min  

(m) 

99th  

percentile  

Max 

 (m) 

99th  

percentile  

Median 

Error (m) 

99th  

percentile  

MAE  

(m) 

99th  

percentile  

RMSE 

(m) 

1 1 IDW 0.000 7.818 0.520 1.554 2.218 

2 1 Linear 0.000 7.371 0.347 1.286 1.937 

3 1 Spline 0.000 8.080 0.335 1.329 2.036 

4 5 IDW 0.000 5.115 1.025 0.887 1.329 

5 5 Linear 0.000 4.659 0.738 0.700 1.116 

6 5 Spline 0.000 4.879 0.734 0.699 1.131 

7 10 IDW 0.000 4.184 0.379 0.689 1.056 

8 10 Linear 0.000 3.764 0.248 0.536 0.873 

9 10 Spline 0.000 3.863 0.236 0.526 0.869 

10 25 IDW 0.000 3.190 0.246 0.490 0.773 

11 25 Linear 0.000 2.860 0.160 0.383 0.640 

12 25 Spline 0.000 2.849 0.149 0.366 0.619 

13 50 IDW 0.000 2.594 0.177 0.378 0.609 

14 50 Linear 0.000 2.400 0.120 0.306 0.522 

15 50 Spline 0.000 2.304 0.107 0.285 0.491 
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Table 13: Testbed 4 statistics for pairwise interpolation methods comparison at various sampling 

densities. 

Sampling Density (%) Interpolation Methods t-statistics p-value 

1 
 

Spline and IDW -91.9 0 

IDW and Linear 158.9 0 

Spline and Linear 36.1 0 

5 
 

Spline and IDW -141.0 0 

IDW and Linear 184.3 0 

Spline and Linear -2.8 < 0.01 

10 
 

Spline and IDW -150.9 0 

IDW and Linear 183.6 0 

Spline and Linear -9.4 0 

25 
 

Spline and IDW -148.7 0 

IDW and Linear 161.3 0 

Spline and Linear -31.5 0 

50 
 

Spline and IDW -115.8 0 

IDW and Linear 111.1 0 

Spline and Linear -35.0 0 
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Figure 23: Histograms showing pair-wise differences of interpolation methods uncertainties for 
Testbed 4. 

4.5.4.2 Spatial Pattern of Interpolation Uncertainties 

In Figure 24, the non-random pattern of uncertainties in Testbed 4, similar to other testbeds, is 

evident. Visual examination indicates that areas with higher uncertainties correlate with both high 
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slope and roughness values (see Figure 2d for comparison). This dual correlation emphasizes the 

combined influence of slope and roughness on interpolation uncertainties. 

 

Figure 24: Testbed 4 interpolation uncertainty across all sampling densities (columns) and 
interpolation methods (rows), using 99th percentile of data. 
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4.5.4.3 Predictive Models of Interpolation Uncertainties 

Figures 25a&d present adjusted R2 and RMSE values for estimated uncertainty based on the 

distance to the nearest measurement for Testbed 4. The adjusted R2 values indicate a weak 

relationship between the distance to the nearest measurement and interpolation uncertainty, which 

surprisingly diminishes as the sampling density increases. Additionally, the RMSE decreases with 

higher sampling density. Notably, Spline interpolation consistently outperforms Linear and IDW 

interpolation in both metrics 

In Figures 25b&e (Testbed 4), the adjusted R2 and RMSE values are presented for the estimated 

uncertainty based on roughness. A moderate relationship emerged, intensifying with increased 

sampling density. IDW interpolation achieves the highest adjusted R2 but performs the worst in 

RMSE. Linear and Spline interpolations exhibit comparable performance levels. 

Figures 25c&f (Testbed 4) depicts the adjusted R2 and RMSE values for the estimated uncertainty 

based on slope. Similar to roughness, a moderate relationship intensifies with rising sampling 

density. In this case, IDW interpolation excels in adjusted R2, but Linear interpolation emerges as 

the best performer in RMSE. Spline interpolation consistently lags behind in both adjusted R2 and 

RMSE. 

To investigate non-linear relationships, we employed an ANN, revealing marginal improvements 

in both R2 and RMSE (Figure 26). Among the interpolation techniques, IDW remains superior in 

R2, followed by Linear interpolation, while Spline interpolation consistently ranks lowest.  

Similar to Testbed 3, the distinctions in RMSE among the interpolation uncertainty models might 

be operationally significant, given that they are on the order of meters. In furtherance with the 

preceding testbeds, the 10% sampling density appears to be the “sweet spot”. 
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Results from the Random Forest analysis coupled with the bootstrap statistical technique closely 

follow Testbed 3 with 57.4%, 33.1% and 9.5% mean importance of roughness, slope, and distance 

to nearest measurement, respectively (Table 14) 

 

 Figure 25: Adjusted R2 (a-c) and RMSE (d-f) of the relationship between interpolated uncertainty 
and estimated uncertainty based on distance to nearest measurement, roughness, and slope 
respectively for Testbed 4. 

 

Figure 26: Adjusted R2 (a) and RMSE (b) of the relationship between interpolated uncertainty and 
estimated uncertainty based on distance to nearest measurement, roughness, and slope combined 
for Testbed 4. 
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Table 14: Statistics of the importance of predictors of uncertainty for Testbed 4. 

Statistics/Parameter Distance Slope Roughness 

Mean Importance (%) 9.5 33.1 57.4 

# times of most Important 0 0 15 

95% bootstrap percentile CI of the Importance (8.9,10.2) (31.4,35.6) (54.9,59.1) 

 

4.5.5 Testbed 5 Results (Rough and Slopy Seabed with high spatial resolution) 

Testbed 5 is a “special” testbed that was used to investigate the impact of data resolutions on 

interpolation uncertainty. This result is presented in the subsequent Spatial Scales section. 

4.5.6 Spatial Scales 

4.5.6.1 Window Sizes 

The investigation of the impact of window sizes on uncertainty estimation focused on Testbed 4, 

the best-performing testbed, with an 8m pixel size resolution. Testbed 4 was chosen because it had 

the highest R2, offering the best potential to reveal the substantial impact of window size on 

uncertainty estimation. The R2 of the ANN relationship between estimated uncertainty and 

combined parameters shown in Figure 27 revealed that the 3-by-3 window initially demonstrated 

the weakest performance compared to other windows from 1% to 10% sampling density but 

outperformed them at 25% and 50% sampling density. The 5-by-5 window consistently secured 

the second position, while the 7-by-7 window performed optimally from 1% to 10% sampling 

density but exhibited the lowest performance at 25% and 50% sampling density. These trends of 

improved estimates from a larger window size were consistent across all interpolation methods for 

Testbed 4. 
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Examining RMSE, the 3-by-3 window outperformed other window sizes at all sampling 

densities except 50% where it secured the second position with IDW. The 5-by-5 and 7-by-7 

windows demonstrated similar performance across various sampling densities for IDW. For Linear 

and Spline interpolations, all three window sizes exhibited comparable performance levels across 

different sampling densities. 

These findings suggest that a larger window is preferable for interpolating low sampling 

density data in Testbed 4. While this conclusion may not universally apply to other testbeds, it 

remains a noteworthy and insightful discovery. 

 

Figure 27: Adjusted R2 (a-c) and RMSE (d-f) of the relationship between interpolated 

uncertainty and estimated uncertainty based on window sizes using Testbed 4. 

4.5.6.2 Data Resolutions 

Figure 13 presents the outcomes of our investigation into the impact of data resolutions on 

interpolation uncertainty, focusing on Testbed 5, the special Testbed with 4m, 8m, and 16m 

resolutions. Utilizing a standard window size of 3-by-3 and employing ANN to assess the 
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relationship between estimated uncertainty and combined parameters, the analysis based on R2 

revealed that the 4m resolution performed the best, with increasing performance observed with 

higher sampling densities across all interpolation methods. All three interpolation methods 

exhibited comparable performance for all resolutions and the 8m resolution performed next to the 

4m resolution, followed by 16m resolution. Examining RMSE, the 4m resolution outperformed 

the 8m and 16m resolutions, with decreasing RMSE as sampling density increased. The IDW error 

was the minimum compared to Linear and Spline interpolations, with Spline interpolation showing 

the highest error. 

 

Figure 28: Adjusted R2 (a-c) and RMSE (d-f) of the relationship between interpolated uncertainty 
and estimated uncertainty based on data resolution using Testbed 5. 
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4.6 Discussion 

The results of our study offer valuable insights into the optimal interpolation method and complex 

interplay between interpolation uncertainty and a suite of ancillary parameters including distance 

to the nearest measurement, roughness, slope, using various sampling densities across diverse 

seabed testbeds. The identification of significant predictors and the evaluation of their impacts on 

interpolation uncertainty contribute valuable perspectives toward improving uncertainty 

estimation in interpolated bathymetry. The nuanced characterization of this uncertainty, achieved 

through an exploration of diverse seabed testbeds, data scarcity, data resolution, and spatial scales, 

has further advanced our comprehension of the subtleties inherent in estimating interpolation 

uncertainty. In the following sections, we delve into key findings, and avenues for further 

exploration. 

4.6.1 Unraveling the Contextual Performance of Interpolation Methods 

The analysis of results revealed that interpolation methods when examined from a scientific 

perspective i.e., to determine the interpolation method that produces the lowest uncertainty Linear 

interpolation proved best for Testbed 1 (Flat), while Spline proved best for Testbeds 2 (Rough), 3 

(Slopy), and 4 (Rough and Slopy). However, these methods demonstrated comparable 

performance at the same sampling density on each testbed, particularly when assessed from an 

operational standpoint (et, differences of a few centimeters, that may not affect the CATZOC 

allocation due to the depth total vertical uncertainty shown in Table 1). The absence of statistically 

significant differences in their performance suggests operational equivalence among the 

interpolation methods. 
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Testbeds 1 and 2 exhibited uncertainties in the order of centimeters due to their relatively less 

complex morphologies. In contrast, Testbeds 3 and 4, with more complex morphologies, showed 

uncertainties in the order of meters.  To facilitate analysis and enhance result comprehension in 

this study, interpolation uncertainties are presented as absolute values. Importantly, it is worth 

noting that the same outcomes arise when expressing uncertainty as a percentage of depth, a crucial 

consideration for CATZOC values in nautical charting. The observed variability in uncertainties 

indicates that seabed complexity significantly influences interpolation uncertainties and highlights 

that Testbeds 1 and 2 will yield more accurate results compared to Testbeds 3 and 4 from an 

operational standpoint, particularly in the context of constructing DBM for nautical charting. This 

insight suggests that it is best to interpolate over simpler morphologies, as the magnitude of 

uncertainty incurred from the interpolation process can reach up to 8 meters or more in complex 

morphologies (refer to Figure 24). Nevertheless, since interpolation is not limited to simpler 

morphologies in practice, this implies that while sampling density can be reduced over simple 

morphologies to save cost and time, it must be increased over complex morphologies. 

Expectedly, the impact of sampling density is conspicuous, particularly in Testbeds 3 and 

4, where uncertainties become relatively similar at higher sampling densities. In summary, 

interpolation method performance varies across Testbeds, influenced by seabed morphology and 

sampling density. 

Moreover, the spatial analysis of interpolation uncertainties across Testbeds reveals non-

random patterns. Concentrations of uncertainties in specific regions, such as the eastern side of 

Testbed 1 (see Figure 9) and areas correlated with high slope and/or high roughness values in 

Testbeds 2, 3, and 4, underscore the impact of underlying terrain characteristics. The presence of 

multibeam artifacts in Testbed 1 highlights the transfer of uncertainties from original data to the 
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interpolation process. Even though survey data can be within the IHO specifications they were 

targeted for, they can still be affected by multibeam artifact (Hughes Clarke et al. 1996). These 

findings emphasize the relationship among data quality, seabed morphology complexity, and the 

resulting interpolation uncertainties. 

4.6.2 Relationship among Parameters, Sampling Density, and Interpolation Uncertainty 

The observed weak association among roughness, slope, and distance with interpolation 

uncertainty using ANN highlights the intricacy involved in estimating uncertainty in interpolated 

bathymetry. Through varied sampling densities and across diverse testbeds, roughness emerged as 

the most important predictor of uncertainty, followed by slope and distance to the nearest 

measurement. It is important to note that machine learning improves the predictive accuracy of the 

model but only in a small way. Roughly only 40% of the variability in the data is explained with 

the combined predictors at 50% sampling density, as Figure 12 illustrated.  

Distance to the nearest measurement, the least important predictor of uncertainty, makes 

the minimum contribution to the overall estimation as indicated by the linear regression result and 

further confirmed by RF analysis. A previous study by Henrico (2021b) corroborated the findings 

of this work, reporting a weak correlation in using distance to the nearest measurement for depth 

estimation at sampling densities below 100%. Conversely, Amante and Eakins (2016) noted a 

robust correlation between distance and interpolation uncertainty, irrespective of sampling density. 

Notably, the introduction of slope and roughness from interpolated depths as uncertainty 

estimators is a novel contribution, without comparative studies. Despite their importance, their 

combined explanatory power is limited, suggesting the presence of unaccounted-for factors 

influencing uncertainty or indicating a strong random component within interpolation uncertainty. 

The high correlation between slope and roughness might contribute to their marginal improvement 
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of the uncertainty estimation. This weak relationship underscores the complexity of the problem, 

signaling the potential necessity for alternative approaches beyond those applied in our study. 

While additional parameters were considered, such as morphological aspects and curvature, they 

exhibited no discernible relationship with interpolation uncertainty and, therefore, are not included 

in this study. 

The diminishing effectiveness of the model at sparser sampling densities underscores the 

importance of a well-distributed sample network. Higher sampling density corresponds to 

decreased interpolation uncertainty, and vice-versa. Additionally, as sampling density decreases, 

the uncertainty model struggles to capture the subtle variations in seabed morphology, leading to 

a reduction in predictive accuracy. However, the disparities in model performance become 

negligible beyond a 10% sampling density, suggesting that 10% is an adequate sampling density 

for estimating interpolation uncertainty when there is a limited budget for hydrographic surveys. 

This finding accentuates the significance of strategic sampling designs, especially in areas with 

sparse data.  This has implications for real-world hydrographic surveys that will have a linear 

sampling pattern rather than the spatially random sample employed here to increase fundamental 

understanding of various data and methodological issues. This is addressed in the next chapter. 

4.6.3 Examining Disparities in Testbed Predictive Performance of Interpolation Methods 

The significant variations in predictive performance observed across testbeds underscore the 

context-specific nuances of interpolation uncertainty. Notably, Testbed 4 (Rough and Slopy) 

exhibited the highest predictive accuracy, likely attributed to the heightened spatial variability 

inherent in Rough and Slopy seabeds, contributing to a more robust model fit. The incorporation 

of slope and roughness as parameters may have further influenced the superior performance 

observed in Testbed 4. 
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Surprisingly, Testbed 3 (Slopy) followed closely in performance, challenging expectations 

based on the identified significance of roughness as the primary predictor of uncertainty 

throughout the study. This divergence suggests that other unexplored factors may contribute to the 

observed results, indicating the complexity of the relationship between parameters and predictive 

performance. 

Contrary to expectations, Testbed 2 (Rough) did not exhibit a performance level 

comparable to Testbed 4 (Rough and Slopy), highlighting a potential dissociation between seabed 

characteristics and predictive accuracy. This incongruity emphasizes the multifaceted nature of the 

relationship, surpassing a simple parameter-bed type association. 

Finally, Testbed 1 (Flat) displayed a lower predictive performance, affirming the challenge 

of capturing variability in less complex terrains. This finding underscores the importance of 

considering the specific characteristics of the seabed when developing and applying interpolation 

models, and recognizing the intricate interplay of factors influencing predictive accuracy in diverse 

seabeds. 

The findings from the predictive accuracy of the uncertainty models are that IDW provides 

a more accurate quantification of interpolation uncertainty than Spline and Linear interpolation 

methods for most testbeds. 

4.6.4 Importance of Predictors 

An in-depth analysis of RF results, complemented by the bootstrap statistical technique, revealed 

that roughness holds the highest predictive importance, followed by slope and distance to the 

nearest measurement. Across all testbeds, the consistently low importance of distance to the 

nearest measurement implies its limited contribution to the predictive models. In contrast, the 
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dominance of roughness, followed by slope, underscores the significance of terrain characteristics 

in driving interpolation uncertainties. 

Notably, on Testbeds 1 and 2, slope appeared to compete with roughness, potentially due 

to the less complex morphology of these seabeds, occurring as the most important in five out of 

15 instances. Additionally, the roughness and slope values for these testbeds are relatively low. 

Conversely, on Testbeds 3 and 4, roughness took dominance, possibly owing to their complex 

nature. The application of the bootstrap statistical technique reinforces the reliability of these 

findings, affirming the statistical significance of observed differences among predictors. 

These results collectively contribute to a comprehensive understanding of the influential 

factors in predictive models of interpolation uncertainties in marine environments. Understanding 

the hierarchical importance of predictors provides valuable insights into how uncertainty in 

interpolated bathymetry can be quantified. 

4.6.5 Impact of Window Size on Interpolation Uncertainty 

Spatial scale becomes especially important in the context of sampling density. The performance 

of different window sizes varies, contingent upon both the density of measurement points and the 

unique characteristics of the seabed. The observed trends in both R2 and RMSE underscore the 

sensitivity of interpolation uncertainty to spatial scales, emphasizing the need for careful 

consideration when selecting window sizes.  

The trend of the 3-by-3 window, particularly excelling at higher sampling densities, hints 

at the nuanced presence of smaller-scale seabed features in Testbed 4. This nuanced observation 

implies that the efficacy of smaller window sizes is not universally applicable; rather, it hinges on 

the interplay between seabed morphology and sampling density. 
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Concurrently, the performance of the 7-by-7 window, excelling at smaller sampling 

densities but faltering at higher densities, suggests its adeptness at capturing and representing 

features on Testbed 4 effectively with fewer measurements. However, this effectiveness 

diminishes as the sampling density increases, indicative of the larger window size incorporating 

more variability and experiencing a subsequent decline in performance. 

This dynamic interrelation among window size, sampling density, and seabed complexity 

underscores the need to carefully determine an optimal window size, considering the multifaceted 

factors at play. While larger windows excel at capturing broader trends in sparser data scenarios, 

their effectiveness diminishes in denser data environments where smaller-scale features and 

variations take precedence. 

Understanding this intricate relationship facilitates the selection of an appropriate spatial 

scale tailored to specific sampling conditions. This nuanced comprehension significantly enhances 

our overarching understanding of characterizing uncertainty in interpolated bathymetry. 

4.6.6 Impact of Data Resolutions on Interpolation Uncertainty 

The examination of the impact of data resolutions on interpolation uncertainty, illustrated in Figure 

28, underscores the significance of higher data resolutions in improving uncertainty estimation and 

providing a more detailed depiction of the seabed. In our exploration, we employed Testbed 5 as 

the experimental ground, featuring data resolutions of 4m, 8m, and 16m, providing a 

comprehensive understanding of the dynamics involved. This insight adds depth to the 

understanding of the complexities involved in characterizing uncertainty in bathymetric 

interpolations. 
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4.7 Summary 

This analysis identifies Spline as the interpolation method that produced the least interpolation 

uncertainty among those examined for Testbeds 2 (Rough), 3 (Slopy), and 4 (Rough and Slopy), 

followed by Linear and IDW from a scientific perspective. For Testbed 1 (Flat), Linear 

interpolation produced the least interpolation uncertainty, followed by Spline and IDW. However, 

the differences in the performances of the interpolation methods are not substantial from an 

operational standpoint. Additionally, the analysis underscores the importance of roughness, slope, 

and distance as predictors of interpolation uncertainty across various cell sampling densities and 

diverse testbeds. It is crucial to note, however, that these predictors of uncertainty individually 

exhibit a weak relationship with interpolation uncertainty and the relationship slightly improved 

when predictors were combined into a single ANN model. The performance of uncertainty 

estimation varies significantly across the testbeds, with Testbed 4 demonstrating the best 

performance with the highest adjusted R2 and lowest RMSE, followed by Testbed 3, Testbed 2, 

and Testbed 1. While the predictive accuracy, based on adjusted R2, of the uncertainty model 

generated through IDW interpolation slightly outperformed those produced by Spline and Linear 

interpolation methods across the majority of testbeds, the RMSE of the IDW uncertainty model 

was the least favorable. Notably, the impact of cell sampling density on the model's explanatory 

power is evident, diminishing effectiveness with smaller sampling densities and increasing 

distances to the nearest measurement point. Furthermore, the result of the effects of spatial scales 

showed that interpolation uncertainty can be better estimated with a higher data resolution (smaller 

pixel size) and not necessarily at lower analysis window sizes. 
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4.8 Conclusion 

This study aimed to identify the best bathymetric gap-filling interpolation method – that minimizes 

interpolation uncertainty – and accurately quantify and characterize uncertainty in interpolated 

bathymetry within operational settings. It sought to establish the relationship between interpolation 

uncertainty and a suite of ancillary parameters – distance to the nearest measurement, slope, and 

roughness – across five testbeds in the United States, using various sampling densities. The impact 

of seabed morphology, data paucity, and spatial scales on uncertainty estimation was also 

explored. 

The findings reveal that Spline is the best interpolation method for Testbeds 2, 3 and 4, 

followed by Linear and IDW. For Testbed 1, Linear interpolation resulted in the least interpolation 

uncertainty, followed by Spline and IDW. The ancillary parameters exhibited a weak individual 

and combined relationship with interpolation uncertainty. Notably, roughness emerged as the most 

important predictor, followed by slope and distance to the nearest measurement across the testbeds. 

Additionally, IDW provided a more accurate quantification of interpolation uncertainty than 

Spline and Linear interpolation methods for most testbeds.  

The impact of cell sampling density on the uncertainty model's explanatory power is 

evident, diminishing effectiveness with smaller sampling densities and increasing distances to the 

nearest measurement point. However, 10% sampling density was identified as the optimal 

sampling density for bathymetric interpolation uncertainty estimation.  

Moreover, the precision of interpolation uncertainty varied across testbeds, with Testbed 4 

(Rough and Slopy seabed) yielding the best results (R2 of 0.44 at 50% sampling density), followed 

by Testbed 3 (Slopy seabed), Testbed 2 (Rough seabed), and Testbed 1 (Flat seabed). These 

insights highlight the presence of unaccounted-for factors influencing uncertainty, accentuating 
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that higher data resolution (smaller pixel size) enhances uncertainty estimation, while the optimal 

window size depends on sampling density. 

While the study focuses on deterministic interpolation methods, the decision not to 

optimize interpolation parameters for different testbeds aligns with an operational setting's data-

driven workflow, prioritizing moderate processing time and minimal interpolation parameter 

tweaking. This research substantially advances our understanding of how measurable factors 

contribute to uncertainty estimates in bathymetric models, offering valuable perspectives for 

uncertainty estimation, hydrographic survey planning, and future research and applications in this 

domain.  
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CHAPTER 5 : ESTIMATING AND CHARACTERIZING INTERPOLATION 

UNCERTAINTY IN SET-LINE SPACING HYDROGRAPHIC SURVEYS 

5.1 Introduction 

This chapter investigates the estimation and characterization of interpolation uncertainty in set-

line spacing hydrographic surveys executed with modern survey techniques. Modern hydrographic 

surveys are conducted systematically, guided by survey methodology, and are fundamentally 

distinct from the random sampling approach investigated in the preceding chapter. Set-line spacing 

surveys are used to survey quickly because full seafloor bathymetric surveys are expensive and 

time-consuming, especially in shallow water. Set-line spacing bathymetric surveys when 

performed in tandem with Side Scan Sonar, popularly known as Skunk Stripping in the US as 

explained in the introduction section have numerous benefits without compromising the safety of 

navigation. One of these advantages is that they survey a relatively large area in less time and at a 

reduced cost compared to full seabed coverage bathymetric surveys. They are also efficient in 

shallow water and hazardous environments. It is paramount to also note that the set-line spacing 

approach is commonly used in areas with relatively flat seafloor, low navigational risk, and 

existing data from satellite-derived/lidar bathymetry where bottom detection was not achieved due 

to water clarity or extinction depth (Neff and Wilson 2018, NOAA OCS 2021). However, it leaves 

us with bathymetric coverage gaps that can span meters to kilometers between survey 

measurements and thus calls for a need to interpolate and more importantly, necessitates accurately 

quantifying the uncertainty in the interpolated regions to inform users, especially mariners, of the 

confidence in the data. This uncertainty estimation will help to improve hydrographic offices’ 

CATZOC classification of surveys and is not limited to CATZOC B as full seabed coverage and 

feature detection requirements for CATZOC A1 and A2 would be met using SSS. Additionally, 

characterizing interpolation uncertainty can help to optimize set-line spacing hydrographic survey 



82 
 

designs to meet the desired uncertainty of the grid within the constraints of existing resources and 

their impact on field data collection efforts. 

5.2  Methods 

The methodology utilized herein is the simulation of set-line spacing surveys from the testbeds’ 

complete coverage depth measurement (Figure 29) and investigation of uncertainty estimation 

associated with interpolation within this known area. The main line spacings used are 16m, 32m, 

64m, 128m, 256m, and 512m. These line spacings are chosen thoughtfully to understand how 

interpolation uncertainty will behave in relatively small and wide line spacings. Since main lines 

are usually supplemented by crosslines to verify and evaluate the internal consistency of 

hydrographic surveys, the set-line spacing surveys’ crossline spacings were calculated using 9% 

of main line mileage according to the (NOAA OCS 2021) and distributed geographically across 

the Testbeds (Figure 29). The set-line survey was simulated using these main line spacings and 

their appropriate cross line spacings.  

 

Figure 29: 256-meters main lines spacings and equivalent cross lines spacings training depths on 
Testbed 4. 
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The testbeds’ selected main lines and cross lines depths were the training depths, 

earmarked for interpolation, and the unselected depths which are the test depths, earmarked for 

uncertainty quantification and error analysis (refer to Figure 30). 

 

Figure 30: Workflow for quantifying interpolation uncertainty in set-line spacing surveys. 

The training depths were interpolated using the specified interpolation technique. The 

deterministic interpolation techniques employed are IDW, Spline, and Linear. The resulting 

interpolated raster was then compared, on a cell-by-cell basis, to the test depths to quantify 

interpolation uncertainty. To clarify, interpolation uncertainty was determined by taking the 

absolute value of the difference between the interpolated depths and the measured depths for the 

cells that were not within one of the set lines. Ancillary parameters, such as the Euclidean distance 
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to the nearest measurement, were generated from the training depths; the slope and roughness 

raster surfaces, were generated from the interpolated DBM (refer to Figure 31). These parameters, 

along with their respective interpolation uncertainties, constituted the datasets prepared for 

modeling to discern the relationship between the parameters and interpolation uncertainties. It 

should be noted that there were no iterations in this procedure compared to the random sampling 

methodology in chapter 4, because there is no randomness associated with set-line spacing surveys 

i.e., set-line spacing surveys are systematic sampling or survey techniques. 
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Figure 31: Testbed 4 measured depth (a), 256m main lines spacings and equivalent cross lines 
spacings training depths (b), Linear interpolated depths (c), interpolation uncertainty clipped to 99 
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percentile (d), generated slope from interpolated depths (e), generated roughness from interpolated 
depths (f), and distance to the nearest depth measurement raster (g). 

To mitigate bias in the analysis, depth measurements along the border of study areas were 

part of the data used for interpolation. This approach minimized potential edge effects by ensuring 

that the interpolated values near the study area's boundaries were influenced by actual measured 

depths, reducing potential inaccuracies that could arise from extrapolation. 

5.3 Modeling and Analysis  

The approach used in Chapter 4's Modeling and Analysis section is replicated here. Below is a 

summary of the steps: 

• Linear regression modeling of the relationship between interpolation uncertainty and 

individual parameters. 

• ANN implementation to capture the non-linearities, interactions, and hidden relationships 

within combined parameters. 

• RF's feature importance together with bootstrap statistical technique to determine the 

importance of individual parameters and their significance. 

5.4 Validation Technique/Accuracy Assessment  

The Validation Technique/Accuracy Assessment section (Chapter 4) is replicated with the 

following summarized steps: 

• Split-sample method to divide the dataset into training and test subsets, using the former 

for interpolation and evaluating performance with the latter. 

• Utilize common statistical metrics (RMSE, MAE, R²) to evaluate the accuracy of the 

interpolation methods. 

• Conduct pair-wise t-tests to statistically assess differences in interpolation methods. 

• Spatial evaluation of interpolation uncertainty through visual inspection. 
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5.5 Results 

The presentation of results is organized based on testbeds, outlined in the following subsections. 

5.5.1 Testbed 1 (Flat Seabed) 

5.5.1.1 Interpolation Methods 

Figure 32 displays the box and whisker plots illustrating the performance of interpolation methods 

across all mainline spacings (16m, 32m, 64m, 128m, 256m, 512m) for Testbed 1. Complementing 

these visualizations, Table 15 provides descriptive statistics of interpolation uncertainties at the 

99th percentile confidence interval for each line spacing and interpolation method. Notably, the 

uncertainties of the different interpolation methods are relatively the same at the same mainline 

spacing with Linear interpolation performing slightly better than IDW and Spline. It is highlighted 

that the interpolation uncertainties here are in the order of centimeters, attributed to the simpler 

morphology of Testbed 1. This simpler morphology is also a contributing factor to the Linear 

interpolation method exhibiting the lowest uncertainty compared to the other two methods. Table 

16 and Figure 33 show that there are no statistically significant differences in the interpolation 

methods at each of the mainline spacings. This is indicated by the t-test result and the distributions 

of each pair-wise interpolation uncertainty difference centered around zero. 
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Figure 32: Testbed 1 interpolation methods uncertainty comparison at various line spacings using 
box and whisker, plotted with 99% percentile of data. 
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Table 15: Testbed 1 interpolation uncertainty descriptive statistics at various line spacings. 

S/N 

Line 

Spacing 

(m) 

Interpolator 

99th 

percentile 

Min (m) 

99th 

percentile 

Max (m) 

99th 

percentile 

Median 

Error (m) 

99th 

percentile 

MAE (m) 

99th 

percentile 

RMSE 

(m) 

1 16 IDW 0.000 0.070 0.011 0.017 0.020 

2 16 Linear 0.000 0.080 0.010 0.015 0.022 

3 16 Spline 0.000 0.090 0.011 0.016 0.022 

4 32 IDW 0.000 0.080 0.012 0.017 0.021 

5 32 Linear 0.000 0.090 0.012 0.016 0.023 

6 32 Spline 0.000 0.090 0.012 0.016 0.023 

7 64 IDW 0.000 0.090 0.015 0.018 0.026 

8 64 Linear 0.000 0.100 0.014 0.019 0.025 

9 64 Spline 0.000 0.100 0.013 0.018 0.025 

10 128 IDW 0.000 0.140 0.019 0.022 0.036 

11 128 Linear 0.000 0.120 0.016 0.027 0.031 

12 128 Spline 0.000 0.120 0.016 0.023 0.032 

13 256 IDW 0.000 0.220 0.029 0.030 0.057 

14 256 Linear 0.000 0.160 0.020 0.041 0.043 

15 256 Spline 0.000 0.180 0.021 0.033 0.047 

16 512 IDW 0.000 0.350 0.047 0.035 0.091 

17 512 Linear 0.000 0.190 0.023 0.066 0.050 

18 512 Spline 0.000 0.230 0.024 0.039 0.056 
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Table 16: Testbed 1 statistics for pairwise interpolation methods comparison at various line 

spacings. 

Line Spacing (m) Interpolation Methods t-statistics p-value 

16 
 

Spline and IDW 96 0 

IDW and Linear -9.8 0 

Spline and Linear 220.3 0 

32 
 

Spline and IDW 82.4 0 

IDW and Linear -0.8 0 

Spline and Linear 209.2 0 

64 
 

Spline and IDW -64 0 

IDW and Linear 128.8 0 

Spline and Linear 137.2 0 

128 
 

Spline and IDW -184.7 0 

IDW and Linear 238.8 0 

Spline and Linear 103.9 0 

256 
 

Spline and IDW -260.7 0 

IDW and Linear 362.8 0 

Spline and Linear 266.9 0 

512 
 

Spline and IDW -536.4 0 

IDW and Linear 612.5 0 

Spline and Linear 212.3 0 
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Figure 33: Histograms showing pair-wise differences of interpolation methods uncertainties for 
Testbed 1. 
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5.5.1.2 Spatial Pattern of Interpolation Uncertainties 

Figure 34 illustrates the spatial distribution of interpolation uncertainties of the interpolation 

methods across all line spacings for Testbed 1. To facilitate comparison, the color bar has been 

standardized across line spacings and interpolation methods. An intriguing observation is that the 

interpolation uncertainties do not exhibit a random pattern across the testbed with all line spacings. 

Instead, they are notably concentrated on the eastern side of the plots, attributed to multibeam 

artifacts (strips) present in the original datasets from BlueTopo. Furthermore, the interpolation 

uncertainties are pronounced in areas farthest from the set-lines sampled, i.e., the wider the line 

spacing, the higher the interpolation uncertainty. 
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Figure 34: Testbed 1 interpolation uncertainty across all line spacings (columns) and interpolation 
methods (rows), using 99th percentile of data. 
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5.5.1.3 Predictive Models of Interpolation Uncertainties 

Figures 35a & 35d present the adjusted R2 and RMSE values for the estimated uncertainty for 

Testbed 1, assessed in relation to the distance to the nearest measurement across the line spacings 

(16m, 32m, 64m, 128m, 256m, 512m).  The adjusted R2 values indicate a weak relationship 

between the distance to the nearest measurement and interpolation uncertainty, with IDW 

outperforming the two other interpolation methods. Additionally, wider line spacings correspond 

to increased RMSE, with Linear interpolation outperforming IDW and Spline.  

Figures 35b & 35e depict adjusted R2 and RMSE values for the estimated uncertainty based 

on roughness for Testbed 1. A weak relationship diminishes with increased line spacing. Spline 

outperformed Linear and IDW. Similar to the distance to the nearest measurement, wider line 

spacings correspond to increased RMSE, with Linear interpolation outperforming Spline and IDW. 

Figures 35c & 35f present the adjusted R2 and RMSE values for the estimated uncertainty 

based on slope for Testbed 1. A relatively same weak relationship was observed among the 

interpolation methods with increased line spacing, with Spline outperforming Linear and IDW. 

Similar to the distance to the nearest measurement and roughness, wider line spacings correspond 

to increased RMSE, with Linear interpolation outperforming Spline and IDW. 

To investigate the hidden non-linear relationships between the combined parameters and 

the estimated uncertainty, we employed an Artificial Neural Network (ANN). Results indicate that 

combining distance to the nearest measurement, slope, and roughness in a model improves the 

model's performance, albeit with marginal enhancements in both R2 and RMSE (Figure 36). 

Among the interpolation techniques, IDW performs best in R2 but performs the worst in RMSE 

which is corroborated by findings in Figure 35. Linear interpolation follows Spline in adjusted R2 

and outperforms it in RMSE.  
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In general, the differences in the interpolation uncertainty models’ RMSE are not 

noteworthy from an operational perspective because they are in the order of centimeters. 

Surprisingly, based on R2, the performance of the uncertainty models improves at wider line 

spacings, as evidenced in the combined parameters' interpolation uncertainty models. 

Furthermore, the application of the RF machine learning algorithm alongside the bootstrap 

statistical technique reveals that slope is the most influential predictor ranking as the most 

important in 13 out of 18 instances, with a mean importance level of 52.9% (Table 17). These 

instances stem from the combination of three interpolation methods and six line spacings. 

Followed by slope is roughness, identified as the most important in 5 out of 18 instances, 

particularly dominant with Spline across line spacings except 16m, with a mean importance of 

38.7%. Conversely, distance to the nearest measurement is the least important predictor, not 

appearing as the most important in any instance and holding a mean importance of 8.4%. Crucially, 

the bootstrap technique confirms the statistically significant differences in these parameters. 
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Figure 35: Adjusted R2 (a-c) and RMSE (d-f) of the relationship between interpolated uncertainty 
and estimated uncertainty based on distance to nearest measurement, roughness, and slope 
respectively for Testbed 1. 

 

Figure 36: Adjusted R2 (a) and RMSE (b) of the relationship between interpolated uncertainty and 
estimated uncertainty based on distance to nearest measurement, roughness, and slope combined 
for Testbed 1. 

Table 17: Statistics of the importance of predictors of uncertainty for Testbed 1 

Statistics/Parameter Distance Slope Roughness 
Mean Importance (%) 8.4 52.8 38.7 
# times of most Important 0 13 5 
95% bootstrap percentile CI of the Importance (8.0,8.8) (51.4,54.3) (37.3,40.1) 
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5.5.2 Testbed 2 (Rough Seabed) 

5.5.2.1 Interpolation Methods 

Figure 37 displays the box and whisker plots illustrating the performance of interpolation methods 

across all mainline spacings for Testbed 2. Similar to Testbed 1, the interpolation uncertainties of 

the interpolation methods are relatively the same across the same line spacing. However, on 

Testbed 2, the Spline interpolation performs slightly better than Linear and IDW as shown in Table 

18. Additionally, the interpolation uncertainties here are in the order of centimeters, attributed to 

the relatively simple morphology of Testbed 2. Table 19 and Figure 38 also show that there are no 

statistically significant differences in the interpolation methods at each of the line spacings.  

 

Figure 37: Testbed 2 interpolation methods uncertainty comparison at various line spacings using 
box and whisker, plotted with 99% percentile of data. 

 

 

 



98 
 

Table 18: Testbed 2 interpolation uncertainty descriptive statistics at various line spacings. 

S/N 

Line 

Spacing 

(m) 

Interpolator 

99th 

percentile 

Min (m) 

99th 

percentile 

Max (m) 

99th 

percentile 

Median 

Error(m) 

99th 

percentile 

MAE (m) 

99th 

percentile 

RMSE 

(m) 

1 16 IDW 0.000 0.185 0.024 0.024 0.049 

2 16 Linear 0.000 0.150 0.015 0.035 0.035 

3 16 Spline 0.000 0.140 0.013 0.022 0.033 

4 32 IDW 0.000 0.275 0.037 0.039 0.073 

5 32 Linear 0.000 0.237 0.025 0.053 0.057 

6 32 Spline 0.000 0.223 0.021 0.035 0.052 

7 64 IDW 0.000 0.560 0.079 0.074 0.152 

8 64 Linear 0.000 0.423 0.048 0.111 0.106 

9 64 Spline 0.000 0.397 0.042 0.067 0.098 

10 128 IDW 0.000 1.030 0.138 0.152 0.281 

11 128 Linear 0.000 0.794 0.100 0.202 0.214 

12 128 Spline 0.000 0.769 0.091 0.141 0.201 

13 256 IDW 0.000 1.721 0.240 0.304 0.492 

14 256 Linear 0.000 1.408 0.211 0.353 0.419 

15 256 Spline 0.000 1.453 0.209 0.305 0.423 

16 512 IDW 0.000 2.575 0.394 0.508 0.774 

17 512 Linear 0.000 2.233 0.365 0.563 0.690 

18 512 Spline 0.000 2.397 0.383 0.540 0.738 
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Table 19: Testbed 2 statistics for pairwise interpolation methods comparison at various line 

spacings. 

Line Spacing (m) Interpolation Methods t-statistics p-value 

16 
 

Spline and IDW -341.3 0 

IDW and Linear 356.3 0 

Spline and Linear -63.4 0 

32 
 

Spline and IDW -390.6 0 

IDW and Linear 366.3 0 

Spline and Linear -147.9 0 

64 
 

Spline and IDW -501.8 0 

IDW and Linear 452.5 0 

Spline and Linear -158.9 0 

128 
 

Spline and IDW -409.8 0 

IDW and Linear 351.3 0 

Spline and Linear -142.3 0 

256 
 

Spline and IDW -215.1 0 

IDW and Linear 226.5 0 

Spline and Linear 12.9 0 

512 
 

Spline and IDW -78.9 0 

IDW and Linear 190.5 0 

Spline and Linear 210.8 0 
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Figure 38: Histograms showing pair-wise differences of interpolation methods uncertainties for 
Testbed 2. 
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5.5.2.2 Spatial Pattern of Interpolation Uncertainties 

Figure 39 showcases the spatial distribution of interpolation uncertainties in Testbed 2. The color 

bar, standardized for ease of comparison, highlights the interpolation uncertainties do not exhibit 

a random pattern across the testbed. It also indicates that areas with higher interpolation 

uncertainties are the farthest from a measurement of known depth and are also visually related to 

high roughness values. This underscores the influence of distance to the nearest measurement and 

seabed roughness on uncertainty patterns. 
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Figure 39: Testbed 2 interpolation uncertainty across all line spacings (columns) and interpolation 
methods (rows), using 99th percentile of data. 
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5.5.2.3 Predictive Models of Interpolation Uncertainties 

Figures 40a & 40d present the adjusted R2 and RMSE values for estimated uncertainty based on 

the distance to the nearest measurement for Testbed 2. A weak relationship is observed which 

improves with increasing line spacing. IDW outperforms Linear and Spline based on R2 and 

performs the worst in RMSE. Linear and Spline perform comparably the same in both metrics. 

Figures 40b & 40e (Testbed 2) present the adjusted R2 and RMSE values for estimated 

uncertainty based on roughness. A weak relationship is observed which weakens with increasing 

line spacing. IDW performs the best based on R2, followed by Spline. Based on RMSE, IDW 

performs the worst in RMSE while Linear and Spline exhibit similar performances in both metrics. 

Figures 40c & 40f (Testbed 2) depict the adjusted R2 and RMSE values for estimated 

uncertainty based on slope. The trends observed in roughness are also seen here. 

To investigate the hidden non-linear relationships, we employed an ANN, revealing 

marginal improvements in both R2 and RMSE (Figure 41). Among interpolation techniques, IDW 

performs the best in R2 and performs the least in RMSE. Linear and Spline interpolations exhibit 

similar performance levels in both metrics. The distinctions in RMSE among the interpolation 

uncertainty models are not operationally concerning.  

Results from the RF analysis coupled with the bootstrap statistical technique reveal that 

slope emerges as the most influential predictor ranking as the most important in 12 out of 18 

instances, with a mean importance level of 49.7% (Table 20). It is followed by slope with a mean 

importance of 38.8% and appearing as the most important in six of 18 instances.  Distance to the 

nearest measurement is the least important predictor, with a mean importance of 11.5%. 

Importantly, the bootstrap technique confirms the statistical significance of the differences in these 

parameters. 
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Figure 40: Adjusted R2 (a-c) and RMSE (d-f) of the relationship between interpolated uncertainty 
and estimated uncertainty based on distance to nearest measurement, roughness, and slope 
respectively for Testbed 2. 

 

Figure 41: Adjusted R2 (a) and RMSE (b) of the relationship between interpolated uncertainty and 
estimated uncertainty based on distance to nearest measurement, roughness, and slope combined 
for Testbed 2. 

Table 20: Statistics of the importance of predictors of uncertainty for Testbed 2 

Statistics/Parameter Distance Slope Roughness 

Mean Importance (%) 11.5 49.7 38.8 

# times of most Important 0 12 6 

95% bootstrap percentile CI of the Importance (11.1,11.8) (48.9,50.5) (38.0,39.7) 
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5.5.3 Testbed 3 (Slopy Seabed) 

5.5.3.1 Interpolation Methods 

Figure 42 displays the box and whisker plots illustrating the performance of interpolation methods 

across all line spacings for Testbed 3. These visualizations are complemented by the descriptive 

statistics provided in Table 21. The interpolation uncertainties of the interpolation methods vary 

at wider line spacings and become relatively the same at the tighter line spacings of 16m, 32m and 

64m. The Spline interpolation method performs better than Linear and IDW at wider line spacings 

(64m, 128m, 256m, and 512m) while Linear performed the best at 16m and 32m line spacings. 

Compared to Testbeds 1 and 2, the interpolation uncertainties here are in the order of meters, 

attributed to the complex morphology of Testbed 3. Importantly, Table 22 and Figure 43 show that 

the differences seen among the interpolation methods in the box and whisker plots are not 

statistically significant. 

 

Figure 42: Testbed 3 interpolation methods uncertainty comparison at various line spacings using 
box and whisker, plotted with 99% percentile of data. 
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Table 21: Testbed 3 interpolation uncertainty descriptive statistics at various line spacings. 

S/N 

Line 

Spacing 

(m) 

Interpolator 

99th 

percentile 

Min (m) 

99th 

percentile 

Max (m) 

99th 

percentile 

Median 

Error (m) 

99th 

percentile 

MAE (m) 

99th 

percentile 

RMSE 

(m) 

1 16 IDW 0.000 1.264 0.101 0.152 0.250 

2 16 Linear 0.000 1.285 0.090 0.163 0.240 

3 16 Spline 0.000 1.289 0.091 0.155 0.244 

4 32 IDW 0.000 1.704 0.135 0.186 0.342 

5 32 Linear 0.000 1.465 0.115 0.222 0.286 

6 32 Spline 0.000 1.522 0.116 0.190 0.294 

7 64 IDW 0.000 4.423 0.258 0.245 0.828 

8 64 Linear 0.000 1.889 0.150 0.496 0.378 

9 64 Spline 0.000 1.711 0.143 0.227 0.344 

10 128 IDW 0.000 9.361 0.472 0.471 1.730 

11 128 Linear 0.000 3.925 0.253 0.998 0.766 

12 128 Spline 0.000 3.056 0.220 0.387 0.611 

13 256 IDW 0.000 18.339 0.897 1.148 3.464 

14 256 Linear 0.000 9.955 0.564 1.973 1.927 

15 256 Spline 0.000 8.200 0.548 1.049 1.694 

16 512 IDW 0.000 33.851 1.695 2.799 6.622 

17 512 Linear 0.000 21.378 1.357 3.768 4.635 

18 512 Spline 0.000 20.569 1.526 2.817 4.450 
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Table 22: Testbed 3 statistics for pairwise interpolation methods comparison at various line 

spacings. 

Line Spacing (m) Interpolation Methods t-statistics p-value 

16 
 

Spline and IDW -36.3 0 

IDW and Linear 68.6 0 

Spline and Linear 69.5 0 

32 
 

Spline and IDW -135.4 0 

IDW and Linear 173.5 0 

Spline and Linear 64.4 0 

64 
 

Spline and IDW -475.9 0 

IDW and Linear 453.1 0 

Spline and Linear -114.1 0 

128 
 

Spline and IDW -529 0 

IDW and Linear 475.8 0 

Spline and Linear -230.5 0 

256 
 

Spline and IDW -438.3 0 

IDW and Linear 402.3 0 

Spline and Linear -132 0 

512 
 

Spline and IDW -273.6 0 

IDW and Linear 281 0 

Spline and Linear 6.7 0 
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Figure 43: Histograms showing pair-wise differences of interpolation methods uncertainties for 
Testbed 3. 
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5.5.3.2 Spatial Pattern of Interpolation Uncertainties 

Examining Figure 44, the spatial distribution of uncertainties in Testbed 3 reveals a non-random 

pattern. Higher uncertainties are visually related with areas of high distance to nearest 

measurement and slope values. This observation underscores the impact of distance to the nearest 

measurement and slope characteristics on interpolation uncertainty. 
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Figure 44: Testbed 3 interpolation uncertainty across all line spacings (columns) and interpolation 
methods (rows), using 99th percentile of data. 
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5.5.3.3 Predictive Models of Interpolation Uncertainties 

Figures 45a & 45d present the adjusted R2 and RMSE values for estimated uncertainty based on 

the distance to the nearest measurement for Testbed 3. A weak relationship is observed which 

improves with increasing line spacing. The interpolation methods perform comparably the same 

based on R2 and Spline outperforms Linear and IDW in RMSE. 

Figures 45b & 45e (Testbed 3) present the adjusted R2 and RMSE values for estimated 

uncertainty based on roughness. A weak relationship emerges with Spline interpolation 

consistently outperforming Linear and IDW interpolation in both metrics. 

Figures 45c & 45f (Testbed 3) depict the adjusted R2 and RMSE values for estimated 

uncertainty based on slope. The relationship is also weak and, in this case, IDW interpolation 

performs the worst in both metrics, while Linear and Spline interpolations exhibit similar 

performance levels. 

To investigate the hidden non-linear relationships, we employed an ANN, revealing 

marginal improvements in both R2 and RMSE (Figure 46). Among interpolation techniques, IDW 

performs the best in R2 at tighter line spacing but performs the worst at wider line spacings. IDW 

also performs the least in RMSE. Linear and Spline interpolations exhibit similar performance 

levels in both metrics. The distinctions in RMSE among the interpolation uncertainty models are 

not operationally concerning, with the exception of IDW given that it differs from others by meters. 

There seems to be an anomaly in the uncertainty model results of IDW (refer to Figure 46a). This 

anomaly is unique to IDW and is suspected to be caused by the influence of distance to the nearest 

measurement as a predictor, based on our investigation. 

Results from the RF analysis coupled with the bootstrap statistical technique reveal that 

roughness emerges as the most influential predictor ranking as the most important in 15 out of 18 
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instances, with a mean importance level of 53% (Table 23). Following in importance are slope and 

distance to the nearest measurement, with mean importance levels of 37.7% and 9.3%, 

respectively. Notably, distance to the nearest measurement consistently emerges as the least 

important factor across all 18 instances. The observed variations in the results are statistically 

significant, indicating robust differences among the predictors. 

 

Figure 45: Adjusted R2 (a-c) and RMSE (d-f) of the relationship between interpolated uncertainty 
and estimated uncertainty based on distance to nearest measurement, roughness, and slope 
respectively for Testbed 3. 
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Figure 46: Adjusted R2 (a) and RMSE (b) of the relationship between interpolated uncertainty and 
estimated uncertainty based on distance to nearest measurement, roughness, and slope combined 
for Testbed 3. 

Table 23: Statistics of the importance of predictors of uncertainty for Testbed 3 

Statistics/Parameter Distance Slope Roughness 

Mean Importance (%) 9.3 37.7 53.0 

# times of most Important 0 3 15 

95% bootstrap percentile CI of the Importance (8.9,9.7) (36.2,40.4) (50.3,54.5) 

5.5.4 Testbed 4 (Rough and Slopy Seabed) 

5.5.4.1 Interpolation Methods 

Figure 47 displays the box and whisker plots illustrating the performance of interpolation methods 

across all line spacings for Testbed 4. Table 24 complements these visualizations with descriptive 

statistics of the interpolation uncertainties at the 99th percentile confidence interval for each line 

spacing and interpolation method. The interpolation uncertainties of the interpolation methods 

vary at wider line spacings and become relatively the same at the tighter line spacings of 16m, 

32m and 64m. The Spline interpolation method performs better than Linear and IDW at both 

tighter and wider line spacings. Like Testbed 3, the interpolation uncertainties here are in the order 

of meters, attributed to the complex morphology of Testbed 4. Importantly, Table 25 and Figure 

48 show   that the differences seen in the box and whisker plots and descriptive statistics for each 

line spacing are not statistically significant.  
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Figure 47: Testbed 4 interpolation methods uncertainty comparison at various line spacings using 
box and whisker, plotted with 99% percentile of data. 
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Table 24: Testbed 4 interpolation uncertainty descriptive statistics at various line spacings. 

S/N 

Line 

Spacing 

(m) 

Interpolator 

99th 

percentile 

Min (m) 

99th 

percentile 

Max (m) 

99th 

percentile 

Median 

Error (m) 

99th 

percentile 

MAE (m) 

99th 

percentile 

RMSE 

(m) 

1 16 IDW 0.000 2.278 0.145 0.273 0.533 

2 16 Linear 0.000 2.255 0.100 0.327 0.477 

3 16 Spline 0.000 2.203 0.095 0.264 0.461 

4 32 IDW 0.000 3.160 0.238 0.442 0.763 

5 32 Linear 0.000 3.195 0.190 0.481 0.731 

6 32 Spline 0.000 3.219 0.192 0.433 0.718 

7 64 IDW 0.000 5.315 0.434 0.732 1.288 

8 64 Linear 0.000 4.820 0.360 0.827 1.167 

9 64 Spline 0.000 4.923 0.362 0.731 1.170 

10 128 IDW 0.000 8.361 0.703 1.195 2.061 

11 128 Linear 0.000 7.169 0.646 1.330 1.838 

12 128 Spline 0.000 7.427 0.656 1.222 1.886 

13 256 IDW 0.000 12.217 1.171 1.947 3.216 

14 256 Linear 0.000 10.381 1.151 2.125 2.887 

15 256 Spline 0.000 11.026 1.180 2.025 3.009 

16 512 IDW 0.000 15.922 1.961 2.971 4.657 

17 512 Linear 0.000 14.098 1.973 3.218 4.212 

18 512 Spline 0.000 14.875 2.046 3.132 4.441 
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Table 25: Testbed 4 statistics for pairwise interpolation methods comparison at various line 

spacings. 

Line Spacing (m) Interpolation Methods t-statistics p-value 

16 
 

Spline and IDW -160 0 

IDW and Linear 176.8 0 

Spline and Linear -20.3 0 

32 
 

Spline and IDW -106.7 0 

IDW and Linear 113.4 0 

Spline and Linear -22.5 0 

64 
 

Spline and IDW -139.8 0 

IDW and Linear 153.4 0 

Spline and Linear 6 0 

128 
 

Spline and IDW -111.8 0 

IDW and Linear 147.4 0 

Spline and Linear 59.6 0 

256 
 

Spline and IDW -76.6 0 

IDW and Linear 140.4 0 

Spline and Linear 118.3 0 

512 
 

Spline and IDW -53.9 0 

IDW and Linear 151.8 0 

Spline and Linear 171.9 0 
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Figure 48: Histograms showing pair-wise differences of interpolation methods uncertainties for 
Testbed 4. 
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5.5.4.2 Spatial Pattern of Interpolation Uncertainties 

In Figure 49, the non-random pattern of uncertainties in Testbed 4, similar to other testbeds, is 

evident. Visual examination indicates that areas with higher uncertainties correlate with high 

distance to nearest measurement and both high slope and roughness values. This relationship 

emphasizes the combined influence of distance to the nearest measurement, slope, and roughness 

on interpolation uncertainties. 
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Figure 49: Testbed 4 interpolation uncertainty across all line spacings (columns) and interpolation 
methods (rows), using 99th percentile of data. 
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5.5.4.3 Predictive Models of Interpolation Uncertainties 

Figures 50a & 50d present adjusted R2 and RMSE values for estimated uncertainty based on the 

distance to the nearest measurement for Testbed 4. A very weak relationship improves with 

increasing line spacing and the interpolation methods exhibit relatively similar performance levels 

in both metrics. 

Figures 50b & 50e (Testbed 4) present the adjusted R2 and RMSE values for estimated 

uncertainty based on roughness. A moderately strong relationship weakens with increasing line 

spacing, and the interpolation methods exhibit relatively similar performance levels in both 

metrics. 

Figures 50c & 50f (Testbed 4) depict adjusted R2 and RMSE values for estimated 

uncertainty based on slope. Similar to roughness, a moderate relationship intensifies with rising 

line spacing, and the interpolation methods exhibit relatively comparable performance levels in 

both metrics. 

To investigate the hidden non-linear relationships, we employed an ANN, revealing 

marginal improvements in both R2 and RMSE (Figure 51). Among interpolation techniques, IDW 

performs best in R2 but worst in RMSE. Linear and Spline interpolations exhibit similar 

performance levels. Much like Testbed 1 and Testbed 2, the differences in RMSE among the 

interpolation uncertainty models are not operationally significant, given that they are in the order 

of centimeters. 

Results from the RF analysis coupled with the bootstrap statistical technique reveal that 

roughness emerges as the most influential predictor ranking as the most important in 17 out of 18 

instances, with a mean importance level of 52.9% (Table 26). Following in importance are slope 

and distance to the nearest measurement, with mean importance levels of 38.3% and 8.8%, 
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respectively. Notably, distance to the nearest measurement consistently emerges as the least 

important factor across all 18 instances. The observed variations in the results are statistically 

significant, indicating robust differences among the predictors. 

 

Figure 50: Adjusted R2 (a-c) and RMSE (d-f) of the relationship between interpolated uncertainty 
and estimated uncertainty based on distance to nearest measurement, roughness, and slope 
respectively for Testbed 4. 

 

Figure 51: Adjusted R2 (a) and RMSE (b) of the relationship between interpolated uncertainty and 
estimated uncertainty based on distance to nearest measurement, roughness, and slope combined 
for Testbed 4. 
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Table 26: Statistics of the importance of predictors of uncertainty for Testbed 4. 

Statistics/Parameter Distance Slope Roughness 
Mean Importance (%) 8.8 38.3 52.9 
# times of most Important 0 1 17 
95% bootstrap percentile CI of the Importance (8.5,9.0) (37.5,39.1) (52.2,53.7) 

 

5.6 Discussion 

5.6.1 Unraveling the Contextual Performance of Interpolation Methods 

The analysis of results revealed that interpolation methods when examined from a scientific 

perspective i.e., to determine the interpolation method that produces the lowest uncertainty Linear 

interpolation proved best for Testbed 1 (Flat), while Spline proved best for Testbeds 2 (Rough), 3 

(Slopy), and 4 (Rough and Slopy). IDW consistently performed the worst for all testbeds. 

However, these interpolation methods demonstrated comparable performance at the same line 

spacing on each testbed, particularly when assessed from an operational standpoint (i.e., 

differences of a few centimeters, that may not affect the CATZOC designation due to the depth 

total vertical uncertainty shown in Table 1). The absence of statistically significant differences in 

their performance suggests operational equivalence among all three interpolation methods. 

Testbeds 1 and 2 exhibited uncertainties in the order of centimeters due to their relatively 

less complex morphologies. In contrast, Testbeds 3 and 4, featuring more complex morphologies, 

show uncertainties in the order of meters particularly at wider line spacings (256m and 512m).  To 

facilitate analysis and enhance result comprehension in this study, interpolation uncertainties are 

presented as absolute values. Importantly, it is worth noting that the same outcomes arise when 

expressing uncertainty as a percentage of depth, a crucial consideration for CATZOC values in 

nautical charting. The observed variability in uncertainties indicates that seabed complexity 



123 
 

significantly influences interpolation uncertainties and highlights that Testbeds 1 and 2 will yield 

more accurate results compared to Testbeds 3 and 4, particularly in the context of generating 

DBMs from set-line spacing surveys and field survey operations. This insight indicates that seabed 

morphology is one of the variables that should drive set-line spacing survey density.  It also 

suggests that it is best to use a set-line spacing survey approach on simpler morphologies, as the 

magnitude of uncertainty incurred from the interpolation process can reach up to 20 meters or more 

in complex morphologies (refer to Figure 44).  

The impact of line spacing is conspicuous, particularly in Testbeds 3 and 4, where 

uncertainties become relatively similar and smaller at tighter line spacing. This suggests that 

denser line spacing is a way of overcoming geomorphologically related uncertainty on Testbeds 3 

and 4. In summary, interpolation method performance varies across Testbeds, influenced by 

seabed morphology and line spacing. While nuanced differences exist, the overall insights suggest 

that selecting an interpolation method should be tailored to the specific characteristics of the seabed 

under consideration. 

Moreover, the spatial analysis of interpolation uncertainties across Testbeds reveals non-

random patterns. Concentrations of uncertainties in specific regions, such as the eastern side of 

Testbed 1 (see Figure 9) and areas correlated with high distance to the nearest measurement and 

high slope and/or high roughness values in Testbeds 2, 3, and 4, underscore the impact of 

underlying terrain characteristics and line spacings. The presence of multibeam artifacts in Testbed 

1 highlights the transfer of uncertainties from the original data to the interpolation process. Even 

though survey data can be within the IHO specifications they were targeted for, they can still be 

affected by multibeam artifacts (Hughes Clarke et al. 1996). These findings emphasize the 
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relationship among data quality, line spacing density, seabed morphology complexity, and the 

resulting interpolation uncertainties. 

In summary, the choice of interpolation method does not significantly impact results, and 

differences observed in uncertainties are generally not statistically significant. Performance varies 

across testbeds, suggesting that morphological complexity should drive set-line spacing density. 

5.6.2 Relationship among Parameters, Line Spacing, and Interpolation Uncertainty 

The observed weak association among roughness, slope, and distance with interpolation 

uncertainty using ANN highlights the intricacy involved in estimating uncertainty in interpolated 

bathymetry. Through varied line spacings, roughness emerged as the most important predictor of 

uncertainty for Testbeds 3 and 4, followed by slope and distance to the nearest measurement, while 

slope emerged as the most important predictor for Testbeds 1 and 2, followed by roughness and 

distance to the nearest measurement. It is important to note that machine learning improves the 

predictive accuracy of the model but only in a small way. Roughly only 40% of the variability in 

the data is explained with the combined predictors at 16m line spacing sampling density, as Figure 

51 illustrated. 

Distance to the nearest measurement, the least important predictor of uncertainty, makes 

the minimum contribution to the overall estimation as indicated by the linear regression result and 

further confirmed by RF analysis. Distance was observed to correlate well with interpolation 

uncertainty at wider line spacings.  

Notably, the introduction of slope and roughness from interpolated depths to estimate 

interpolation uncertainty is a novel contribution, without the existence of comparative studies to 

the best of our knowledge. Despite their importance, their combined explanatory power is limited, 

suggesting the presence of unaccounted-for factors influencing uncertainty or indicating a strong 
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random component within interpolation uncertainty. The high correlation between slope and 

roughness might contribute to their marginal improvement of the uncertainty estimation. This 

weak relationship between interpolation uncertainty and combined ancillary parameters 

underscores the complexity of the problem, signaling the potential necessity for alternative 

approaches beyond those applied in our study.  

The diminishing effectiveness of the model at tighter line spacings across the testbeds 

underscores the importance of optimal line spacings. Wider line spacings correspond to increased 

interpolation uncertainty, and vice-versa. Additionally, as line spacing increases, the uncertainty 

model struggles to capture the subtle variations in seabed morphology, leading to a reduction in 

predictive accuracy. This finding accentuates the significance of strategic set-line survey designs, 

where appropriate line spacings can enhance the estimation of interpolation uncertainty.  This has 

implications for real-world hydrographic surveys targeted at a particular CATZOC level to 

maximize survey efficiencies and cost and time. 

5.6.3 Examining Disparities in Testbed Predictive Performance of Interpolation Methods 

The significant variations in predictive performance observed across testbeds underscore the 

context-specific nuances of interpolation uncertainty. Notably, Testbed 4 (Rough and Slopy) 

exhibited the highest predictive accuracy (but lowest interpolation accuracy), likely attributed to 

the heightened spatial variability inherent in Rough and Slopy seabeds, contributing to a more 

robust model fit. The incorporation of slope and roughness as parameters may have further 

influenced the superior performance observed in Testbed 4. 

Surprisingly, Testbed 3 (Slopy) followed closely in performance, with roughness emerging 

as the most important predictor of uncertainty. This suggests that other unexplored factors may 
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contribute to the observed results, indicating the complexity of the relationship between parameters 

and predictive performance. 

Testbed 2 (Rough) performed slightly worse than Testbed 3 with slope as the most 

important predictor of uncertainty. This indicates a potential dissociation between seabed 

characteristics and predictive accuracy, emphasizing the multifaceted nature of this relationship.  

Finally, Testbed 1 (Flat) displayed a lower predictive performance, affirming the challenge 

of capturing variability in less complex terrains.  

These findings underscore the importance of considering the specific characteristics of the 

seabed when developing and applying interpolation models, and recognizing the intricate interplay 

of factors influencing predictive accuracy in diverse seabeds. 

5.6.4 Importance of Predictors 

An in-depth analysis of RF results, complemented by the bootstrap statistical technique, revealed 

that roughness holds the highest predictive importance, followed by slope and distance to the 

nearest measurement for Testbeds 3 and 4 while slope emerged as the most important predictor 

for Testbeds 1 and 2. Across all testbeds, the consistently low importance of distance to the nearest 

measurement implies its limited contribution to the predictive models. In contrast, the dominance 

of roughness and slope underscores the significance of terrain characteristics in driving 

interpolation uncertainties. 

Notably, on Testbeds 1 and 2, slope emerged as the most important predictor while 

competing with roughness, potentially due to the less complex morphology of these seabeds. 

Conversely, on Testbeds 3 and 4, roughness took dominance, possibly owing to their complex 

nature. The application of the bootstrap statistical technique reinforces the reliability of these 

findings, affirming the statistical significance of observed differences among predictors. 
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These results collectively contribute to a comprehensive understanding of the influential 

factors in predictive models of interpolation uncertainties in set-line spacing surveys. 

Understanding the hierarchical importance of predictors provides valuable insights into how 

uncertainty in interpolated bathymetry from set-line spacing surveys can be quantified. 

5.7 Summary 

The examination of interpolation methods within set-line spacing surveys revealed that Linear 

produced the lowest interpolation uncertainty on Testbed 1 (Flat), followed by Spline and IDW. 

On the other hand, Spline produced the lowest uncertainty for Testbeds 2 (Rough), 3 (Slopy), and 

4 (Rough and Slopy). However, the differences in the performance of the interpolation methods 

are operationally insignificant, i.e., their impact on the CATZOC allocations for charting is the 

same. Additionally, seabed complexity significantly influences uncertainties, with Testbeds 1 and 

2 yielding more accurate results compared to Testbeds 3 and 4. Interpolations are best performed 

on less complex morphologies and the choice of interpolation method should be tailored to specific 

seabed characteristics. The predictors of interpolation uncertainty, roughness, slope, and distance 

to the nearest measurement, are important from a statistical perspective. However, the weak 

relationship between interpolation uncertainty and roughness, slope, and distance to the nearest 

measurement, individually and when combined highlighted the complexity of estimating 

uncertainty in interpolated bathymetry. Combining parameters with ANN slightly improves the 

predictive accuracy of the uncertainty model in comparison to the linear regression model of the 

interpolation uncertainty with each individual parameter. Roughness held the highest predictive 

importance, followed by slope and distance to the nearest measurement in Testbeds 3 and 4. 

Bootstrap analysis confirms the statistical significance of observed differences in the importance 

of predictors. On Testbeds 1 and 2, slope competes with roughness to emerge as the most important 
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predictor. The low importance of distance to the nearest measurement across all testbeds 

emphasized the significance of terrain characteristics in driving interpolation uncertainties. The 

performance of uncertainty estimation varies significantly across the testbeds, with Testbed 4 

(Rough and Slopy) demonstrating the best performance with highest adjusted R2 and lowest 

RMSE, followed closely by Testbed 3 (Slopy), then Testbed 2 (Rough), and Testbed 1 (Flat). The 

diminishing effectiveness of the model at tighter line spacings underscores the importance of 

optimal survey designs in interpolation uncertainty quantification. While the predictive accuracy, 

based on adjusted R2, of the uncertainty model generated through IDW interpolation slightly 

outperformed those produced by Spline and Linear interpolation methods across the majority of 

testbeds, the RMSE of the IDW uncertainty model was the least favorable. Summarily, the choice 

of interpolation method does not significantly impact results, and differences observed in 

uncertainties are generally not statistically significant. Performance varies across testbeds, 

influenced by morphological complexity. Most importantly, it does not seem feasible to accurately 

estimate interpolation uncertainty solely based on geomorphology and set-line spacing. 

5.8 Conclusion 

This study aimed to identify the best bathymetric gap-filling interpolation method – that minimizes 

interpolation uncertainty – and accurately quantify and characterize uncertainty in set-line spacing 

surveys. It sought to establish the relationship between interpolation uncertainty and a suite of 

ancillary parameters – distance to the nearest measurement, slope, and roughness – across four 

testbeds in the United States, using tighter and wider line spacings. 

The findings revealed that Spline is the best interpolation method for Testbeds 2 (Rough), 

3 (Slopy), and 4 (Rough and Slopy), followed by Linear and IDW. For Testbed 1, Linear 
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interpolation resulted in the least interpolation uncertainty, followed by Spline and IDW. However, 

the study also showed the operational equivalence of accuracies produced by different 

interpolation methods, as the differences observed are generally negligible from an operational 

standpoint, reflecting uncertainties in centimeters that may not practically impact CATZOC 

designations. 

The weak relationship between the interpolation uncertainty and the parameters, 

roughness, slope, and distance to the nearest measurement highlighted the challenges in estimating 

uncertainty in set-line spacing surveys. This in turn impacts the ability to establish operational 

survey plans that will maximize accuracy for a minimum cost. The introduction of machine 

learning techniques to combine the parameters into a single ANN model provides marginal 

improvements, while revealing the dominance of roughness and slope as the most important 

predictors, across the testbeds. Additionally, IDW captured better the variability of interpolation 

uncertainty than Spline and Linear methods for most testbeds. The impact of appropriate line 

spacing on an uncertainty model's explanatory power is evident, diminishing effectiveness with 

tighter line spacings and wider line spacings. 

Moreover, the estimation of interpolation uncertainty varied across testbeds, with Testbed 

4 (Rough and Slopy seabed) yielding the best results (R2 of 0.4 at 16m line spacing), followed by 

Testbed 3 (Slopy seabed), Testbed 2 (Rough seabed), and Testbed 1 (Flat seabed). These insights 

highlighted the presence of unaccounted-for factors influencing uncertainty or a strong random 

component within interpolation uncertainty. 

While the study focused on deterministic interpolation methods, the decision not to 

optimize interpolation parameters for different testbeds aligns with an operational setting's data-

driven workflow, prioritizing moderate processing time and minimal interpolation parameter 
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tweaking. This research advances our understanding of how measurable factors contribute to 

uncertainty estimates in set-line spacing surveys, offering valuable perspectives for uncertainty 

estimation, hydrographic survey planning, and future research and applications in this domain.  
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CHAPTER 6 : CONCLUSIONS, LIMITATIONS AND RECOMMENDATIONS 

6.1 Conclusions 

This study aimed to quantify and characterize the interpolation uncertainty in both random 

sampling and set-line spacing survey datasets and also identify the bathymetric interpolation 

method that produces the lowest interpolation uncertainty. Across five testbeds in the United 

States, encompassing varied seabed morphologies and employing different sampling densities and 

line spacings, the research investigated the relationship between interpolation uncertainty and 

ancillary parameters: distance to the nearest measurement, slope, and roughness. 

In both Chapter 3 (set-line spacing approach) and Chapter 2 (random sampling approach), 

interpolation methods exhibited comparable performance, with Linear performing best for Testbed 

1 (Flat seabed) and Spline performing best for Testbeds 2 (Rough seabed), 3 (Slopy seabed) and 4 

(Rough and Slopy seabed). However, the differences in the performance of interpolation methods 

are not operationally significant, translating to uncertainties in centimeters that insignificantly 

affect CATZOC allocations. 

The magnitude of uncertainties in both chapters was comparable for Testbeds 1 and 2, 

whereas, for Testbeds 3 and 4, Chapter 3 demonstrated higher interpolation uncertainty. The 

spatial distribution of interpolation uncertainty in both chapters follows non-random patterns, 

strongly influenced by morphological complexity. Notably, in Chapter 3, the distance to the 

nearest measurement also impacted the spatial distribution of uncertainty significantly. 

Interpolation uncertainty estimation using geomorphological variables and distance from a 

point of known depth demonstrated comparable performance across testbeds in both chapters, with 

Testbed 4 exhibiting the best results, followed by Testbeds 3, 2, and 1. Despite weak relationships 

between interpolation uncertainty and ancillary parameters, the parameters examined were 
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statistically significant. In Chapter 2, roughness emerged as the most important predictor for all 

testbeds, while in Chapter 3, slope dominated for Testbeds 1 and 2, and roughness for Testbeds 3 

and 4. The impact of sampling density and line spacing on uncertainty models was evident, 

identifying optimal operational conditions at 10% sampling density and appropriate line spacing. 

This research underscores the complexity of estimating uncertainty in interpolated 

bathymetric datasets, indicating either the presence of unaccounted-for factors driving uncertainty, 

or a random component within interpolation uncertainty. Nevertheless, this study advances our 

understanding of how measurable factors contribute to uncertainty estimates in bathymetric 

models, offering valuable perspectives for uncertainty estimation, hydrographic survey planning, 

and future research and applications in this domain. 

6.2 Limitations of the Study 

Our study focuses on the estimation of interpolation uncertainty in operational settings, where 

data-driven products are derived from extensive datasets. Consequently, geostatistical 

interpolation methods such as Kriging, in which uncertainty estimates are inherent, were omitted 

due to their computationally intensive nature and demand for substantial memory resources. 

Furthermore, our study utilized general interpolation parameters derived from existing 

literature, without optimizing them for the specific characteristics of the testbeds. While 

optimization could potentially enhance the accuracy of interpolation uncertainty estimates, such 

fine-tuning was beyond the scope of this research. 

Additionally, the work focused on the uncertainty metric associated with depth accuracy 

in CATZOC, excluding the horizontal accuracy part and considerations for seafloor feature 

detection and factors like expected feature size or seabed undulations. 
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Finally, while this study attempts to consider morphologies that are widely known and 

prevalent within the US waters, it is important to note that the broader applicability of the findings 

herein might not be applicable universally, geographically, morphologically, and/or analytically. 

6.3 Future Research Directions 

The results of this study indicated that ancillary variables considered do not provide high accurate 

interpolation uncertainty estimation. Subsequent research endeavors could explore the 

incorporation of supplementary predictors, such as the morphological variation index introduced 

by Alcaras et al. (2022), to enhance the predictive capabilities of interpolation models. 

Additionally, integrating advanced machine learning techniques and developing hybrid models 

offer promising avenues for achieving heightened predictive performance. The exploration of 

sophisticated alternatives, such as spectral analysis for uncertainty estimation, may unveil 

innovative approaches. 

Within the scope of this study, we operated under the assumption that the depth data 

obtained from BlueTopo were free of measurement uncertainty. It is crucial to acknowledge, 

however, that depth measurements are associated with uncertainty attributed to various factors 

(refer to Hare et al. 2011). Future research endeavors should consider integrating measurement 

uncertainty with interpolation uncertainty, a practice that would facilitate the assignment of 

CATZOC values for use in nautical charting. 

Another compelling area for future research involves comparing the actual interpolation 

uncertainty with Kriging uncertainty. This is especially pertinent given that interpolation 

uncertainty statistics, as observed in this study, deviate from methodological data assumptions – 

e.g., homogeneity of variance – assumptions that are fundamental to the Kriging method. 
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Finally, the expansion of the set-line spacing aspect of this work is another crucial aspect 

of future research. Understanding how this uncertainty can be leveraged to optimize set-line 

spacing hydrographic survey design for meeting desired uncertainty of grid could prove invaluable 

in the field. Such optimization has the potential to enhance efficiency in terms of both time and 

cost of survey while ensuring essential accuracy standards are maintained. These multidimensional 

explorations hold the promise of revolutionizing the methodologies employed in hydrographic 

surveys.  
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