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Abstract 
 
A large class of diagrams can be informally characterized as node – link diagrams.  
Typically nodes represent entities, and links represent relationships between them.  The 
discipline of graph drawing is concerned with methods for drawing abstract versions of 
such diagrams.  At the foundation of the discipline are a set of graph aesthetics (rules for 
graph layout) that, it is assumed, will produce graphs that can be clearly understood.  
Examples of aesthetics include minimizing edge crossings and minimizing the sum of the 
lengths of the edges.  However, with a few notable exceptions, these aesthetics are taken 
as axiomatic, and have not been empirically tested.  We argue that human pattern 
perception can tell us much that is relevant to the study of graph aesthetics including 
providing a more detailed understanding of aesthetics and suggesting new ones.  In 
particular, we find the importance of good continuity (i.e. keeping multi-edge paths as 
straight as possible) has been neglected.  We introduce a methodology for evaluating the 
cognitive cost of graph aesthetics and we apply it to the task of finding shortest paths in 
spring layout graphs. The results suggest that after the length of the path the two most 
important factors are continuity and edge crossings, and we provide cognitive cost 
estimates for these parameters. Another important factor is the number of branches 
emanating from nodes on the path. 
 
Keywords.  graph layout, aesthetics, cognitive modeling. 
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Introduction 
 
Many diagrams use boxes or circles to show entities and linking lines drawn between 
them to represent relationships between the entities. An example is a software structure 
chart where subroutines are shown as boxes and the linking lines show which subroutines 
call each other.  Other examples of node-link diagrams include organization charts, data 
flow diagrams, flow charts and the set of diagrams encompassed by the unified modeling 
language (UML) [11].  
 
Graphs are abstractions of node-link diagrams studied by mathematicians, and the 
discipline of graph drawing has developed to investigate methods for laying out graphs 
according to a set of aesthetic principles that are assumed to improve readability [1].  
Many of the principles and methods of graph drawing can be applied to the broad area of 
drawing effective node-link diagrams and thus have the potential for wide ranging 
applicability. 
 
Some commonly applied graph layout aesthetics are the minimization of edge crossings, 
displaying symmetry of graph structure, minimizing bends in edges.  However, despite 
the considerable effort that has gone into constructing algorithms to optimize according 
to these aesthetics, surprisingly little work has gone into the empirical validation of these 
aesthetic principles.  A notable exception is the pioneering work of Purchase [10] which 
compared task performance on five pairs of graphs that were designed to differ according 
to the aesthetic principles of edge bends, edge crosses, maximizing the minimum angle, 
orthogonality and symmetry. This study concluded that edge crossings was “by far the 
most important aesthetic” when compared with the other four aesthetic criteria. However, 
the crossings conclusion itself was based on only two hand drawn graphs, one with many 
crossings and one with few.  A visible inspection suggests a number of confounding 
factors: in the version with more crossings the geometric path lengths appear to have 
been longer, there is a less even distribution of nodes, and the paths appear to be less 
continuous than the alternative (ie: their angular deviation from a straight line is greater 
than the version with less crossings). 
 
The results of the initial Purchase study suggest that there is scope for more experimental 
work in this area. Experiments that are more controlled, and which consider a greater 
range of aesthetics within the same graph drawings (rather than merely between two 
drawings representing the extremes of each aesthetic) are more likely to indicate the 
relative importance of the differing aesthetics. 
 
 
Perceptual and cognitive issues in graph aesthetics 
 
Much of what we know about human pattern perception originates with the early work of 
the Gestalt psychologists [1,8]. They produced a set of gestalt laws that determine 
whether we see something as a “figure” as opposed to “ground”.  One gestalt law that is 
especially relevant to graph drawing is the principle of good continuation as illustrated in 
Figure 1.  This suggests that we will more easily see smooth continuous contours than 
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jagged ones.  It also suggests that we will be able to interpret Manhattan layout graphs 
(with only vertical and horizontal lines) less easily than graphs that use smoothly curved 
lines, because the continuous lines are more likely to “pop out” as perceptually complete 
objects [13]. 
 
 

a b c

 
Figure 1.  the pattern on the left (a) is perceived as a curved line overlapping a 
rectangle (b) rather than as shown in (c). 

 
More recent results from neurophysiology bear on the issue of edge crossings in graphs.  
Rapid early-stage neural processing is thought to underlie the tendency of certain simple 
forms to “pop out” from their surroundings [12]. At the early stage of visual processing 
every part of the visual field is processed in parallel with a set of orientation tuned 
neurons that respond preferentially to bars with particular orientations.  These detectors 
are only coarsely tuned, roughly within +/- 30 degrees [4]. This suggests that when edges 
cross at acute angles, they will be more likely to cause visual confusion when rapid 
interpretation is important, than when they cross close to 90 degrees.   See Figure 2. 
 

Figure 2.  The coarse orientation tuning of edge detectors in the brain 
suggests that lines that cross at an acute angle as shown on the left are 
more likely to be confusing than lines that cross nearly at 90 degrees as 
shown on the right. 

 
Cell assemblies are responsible for capturing entire contours, and recent research has cast 
light on how they may function, thereby giving the principle of good continuation a more 
robust empirical and theoretical foundation.  A set of experiments by Field et al [6] 
quantified the good continuation principle, and their stimulus design is illustrated in 
Figure 3.  These studies showed that when contour segments are aligned along a smooth 
curve they are easier to see than when they are not, and the ease with which the contour 
can be seen is a direct function of the continuity of the path.  According to the emerging 
theory, points detected along a curved edge are linked together by a neural mechanism 
that allows edges as a whole to be perceived through a set of local rules that link the 
output of independent feature detectors [6,9].  Whether individual cell tuning properties 
or cell assemblies can best account for how easily people can perceive paths in graphs is 
beyond current theory, but it is likely that both levels of analysis are important. 
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Figure 3.  A schematic diagram illustrating the experiments conducting by Field et al [6],  If the 
elements are aligned as shown in (a) so that a smooth curve can be drawn between them, then 
the curve shown in (b) is perceived.  In the actual experiment Gabor patches were used. 
 
 
Good continuation has two direct applications to graph drawing.  First, it suggests that a 
path will be more readily perceived if the nodes are not in a zigzag pattern, but form a 
smooth continuous sequence.  This point is illustrated in Figure 4.  Good continuation 
also suggests that curved lines can be used to make certain paths more apparent (as 
illustrated in Figure 5) although this is not the focus of our present study. 
 

 bx

a 
 
Figure 4.  The principle of good continuation suggests that it should be easier to see the shortest 
path from x to a than from x to b, despite the fact that in both cases, the shortest path length is 3. 

 
 
Our present work was motivated by two primary concerns: we wished to follow up the 
earlier work of Purchase using a more refined procedure to determine the relative 
importance of different aesthetics.  In particular we were interested in the problem of path 
continuity (Figures 4 and 5). In many cases edge crossings can only be reduced at the 
cost of constructing a more indirect or less continuous path.  If this were the case then 
algorithms should be constructed that take both factors into account. 
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Figure 5.  Good continuation suggests that the path from a to b should be easier to perceive than 
that from b to c. 

c

b

a

 
The second goal was to place the value of graph aesthetics on a firmer empirical 
foundation, by developing and applying a methodology for measuring the cognitive cost 
of graph aesthetics.  By using a large number of trials and varying a set of interesting 
parameters we hoped to be able to deduce the relative cognitive cost of different factors 
in graph layout (eg. edge crossings, path continuity, geometric line length). 
 
 
Perceptual and Cognitive Modeling 
The discipline of human-computer interaction (HCI) has developed simple cognitive 
models of common computer interaction tasks, such as selection of objects using a mouse 
[3].   For example, Fitt’s law [7] has been adopted to describe how long it takes to make a 
visually guided hand movement (using a computer mouse) as a function of how small the 
target is and how far the distance to be moved. 
 
The general strategy for building simple perceptual or cognitive models is applicable to 
the problems of graph aesthetics.  If we consider a task such as determining the shortest 
path between two nodes, we can measure how the time to perform such a task depends on 
various factors, such as the length of the path, the continuity of the path and the number 
of edge crossings on the path.  If such an approach can produce robust and reproducible 
results, we can estimate the cognitive cost of, for example, the number of edges leaving 
intermediate nodes, each crossing, and the angle of the edge crossings. The result could 
then be used to develop optimal layouts to support a set of tasks that are anticipated in the 
use of a node-link diagram. 
 
 
Experimental determination of perceptual and cognitive costs 
 
In order to estimate the cognitive cost of various graph layout aesthetics we developed an 
experiment to measure the time to perceive the shortest path between two specified nodes 
in a spring layout graph.  Our method involved generating a large number of graphs each 
with a unique shortest path between two specified nodes, in which the following factors 
varied: 
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Continuity (“path bendiness”) (con): We defined continuation at a node as the angular 
deviation from a straight line of the two edges on the shortest path which emanate from 
the node.  To get the total path continuity we simply summed the angular deviations at all 
nodes on the path.  By this metric a straight path has a low value. 
 
Number of crossings (cr) and average crossing angles (aca):  We recorded the number 
of edge crossings on the shortest path, as well as the angle of each edge crossing (from 
which we derived the average cosine crossing angle). We expected acute angles would be 
more disruptive than more perpendicular angles.   
 
Number of branches (br): For each of the intermediate nodes on the shortest path, we 
recorded the number of edges leaving the node which were not part of the shortest path 
itself (i.e. the degree of the node minus 2). Every branch on a path represents a possible 
alternative path that might be considered in determining the shortest path.  Thus, as the 
total number of branches on the shortest path increases, we can expect the task to become 
more difficult. 
 
Shortest path length (spl):  We were not interested in the number of edges in the 
shortest path as such; however, in order to generalize the results we thought it desirable to 
evaluate the other factors in the context of the length of the shortest path 
 
In addition to the primary factors we were also interested in: 
 
Total geometric line length (tll):  The spring layout algorithm we used is designed to 
produce edges of approximately constant length. Nevertheless, combined spring forces 
can cause edges to be shorter or longer than the designed length.  Therefore we were 
interested in the actual total geometric length of the shortest path. 
 
Total crossings in the graph (tcr): We recorded the total number of crossings in the 
entire graph drawing. We did not expect this measurement to have any bearing on the 
result, but included it as this was the measurement used by Purchase in the earlier study 
with which we wished to compare our results. 
 
 
Experimental Task 
The subjects were asked to determine the shortest path length of each graph drawing 
presented to them, as produced by the spring layout algorithm. For any given graph 
drawing, the shortest path between the two highlighted nodes was between 3 and 5. The 
start and end nodes were both highlighted. 
 
The Diagrams 
Each graph drawing used in the experiment was a simple non-meaningful node-link 
diagram, which did not describe a specific domain. The parameters for all 180 
experimental graphs were determined prior to the experiment, and stored in a file. The 
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drawings themselves generated during the experiment itself, using the stored parameter 
information. Each trial entailed generating a graph drawing using spring forces and 
simulated annealing [5]. There were 42 nodes in the graph, and the number of edges on 
each node was randomly varied between 1 and 5.  The size of the window was 700 pixels 
square, and physically measured 19.4 cm by 19.4 cm. The subjects sat directly in front of 
the computer screen, at a distance of 40-50cm. The spring constant was set so that the 
mean of the edge lengths was approximately 50 pixels (this converts to approximately 1.4 
cm). 
 
For each trial, the algorithm randomly determined a start node that had at least two 
incident edges. It then used a breadth first search to find a path to another node such that 
there was a unique shortest path between the two nodes of length 3, 4 or 5. 
 
Examples of typical diagrams used in the experiment can be seen in Figure 6. 
 

 
 

Figure 6: Two of the experimental graph drawings, as viewed by the subjects. 
 

 
Experimental Methodology  
 
Experimental Documents 
Subjects were given a set of experimental materials to familiarize themselves with the 
task and the online system. These materials consisted of a consent form, instructions for 
the online system, and a tutorial sheet. 
 
The instruction sheet described the task and the online system that would be used by the 
subject. The tutorial explained graph drawings and the concept of the shortest path 
between two nodes, as well as presenting six example graph drawings. These drawings 
had two nodes highlighted, and the correct answer for the shortest path question was 
indicated for each. 
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The subjects were given five minutes to sign the consent form, read through and 
understand the materials, ask questions, take notes, or draw diagrams as necessary. 
 
 
Online Task 
Following the preparation time, subjects were told to start the custom-built online 
experimental system. The graph drawings were presented individually on the screen and 
subjects were required to respond by indicating the length of the shortest path between 
the two highlighted nodes. Three adjacent keys on the keyboard were used for this 
purpose: they were labeled 3, 4, and 5, the complete range of possible answers. 
 
The subjects were shown 10 blocks of 20 graph drawings each, with the first two blocks 
being identical to the final two sets. These first two blocks of diagrams were used as 
practice diagrams and were excluded from the data, as were the first two diagrams in 
each consecutive block. These practice diagrams were used to accommodate for the 
learning effect (whereby the subjects’ performance on the task may improve over time, as 
they become more competent in the task). 
 
The eight different experimental blocks of graph drawings were presented in random 
order for each subject, though the order of the diagrams within the blocks remained the 
same. This meant the two practice blocks at the beginning of the experiment differed for 
each subject, as they were always the same as the last two blocks of diagrams in the 
experiment. 
 
Each diagram was displayed until the subject either pressed the space bar in order to see 
the following diagram, or pressed one of the labeled numeric keys (3, 4 or 5). There was 
no time limit on the display of the diagrams and only once the subjects pressed the space 
bar would the next diagram appear. A computer beep indicated an incorrect response, to 
encourage the subjects to perform as best they could, and to identify subjects who were 
not taking the task seriously. 
 
In addition, there was a rest period between each block of graph drawings, allowing the 
subjects to recover their concentration before continuing with the experiment. The length 
of this rest break was controlled by the subjects. 
 
 
Data Collection 
 
The experimental data collected was the response time and accuracy of the subjects’ 
responses to the experimental diagrams: this information was recorded by the online 
system during the experiments.  Elapsed times were measured through system calls with 
millisecond nominal resolution.  However, temporal resolution could be no better than 
the 16 millisecond granularity imposed by the monitor refresh rate. 
 
Independently of the experiments, graphical measurements were calculated and recorded 
for each of the 180 graph drawings used. These included: 
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• the correct value for the shortest path length (spl): 3, 4 or 5   
• the continuity (“bendiness”) of the shortest path (con): measured in degrees. 
• the number of crossing edges on the shortest path (cr) 
• the cosine of the angle at which each crossing edge crossed the shortest path. The 

purpose of this was to allow us to weight shallow angle crossings higher than 
orthogonal crossings.  From this we computed the average cosine crossing angle  
(aca) 

• the total number of crossed edges in the graph drawing (tcr) 
• the number of edges branching from nodes along the shortest path (br) 
• average geometric line length along the shortest path, per edge (all). This was 

computed in arbitrary units. To get centimeters it is necessary to multiply by 1.4. 
• total geometric line length of the shortest path (tll): same units as all 

 
Subjects 
 
The 43 subjects were second and third year Computer Science and Information Systems 
students at the University of Queensland. The subjects were paid $15 for their time, and, 
as an incentive for them to take the experiment seriously, the best performer was given a 
CD voucher. 
 
Results 
 
93% of the subjects’ responses were correct. The response time data was analyzed using 
only the correct trials. Subjects saw 10 blocks of 20 drawings each. 7 graph drawings 
were eliminated from the analysis because of an unexpected perceptual error, where an 
edge passing under a node, looked as if it were two edges attached to that node. 
Eliminating the practice graphs (the first two blocks, 40 drawings), and the first two 
drawings of each subsequent set (2 x 8 = 16 drawings), left us with 137 drawings in our 
experimental set. 
 
Our independent variable was the average response time over all subjects for each graph 
drawing (rt), and our dependent variables were the measured geometric features of each 
drawing: spl, con, cr, aca, tcr, br, all, tll. 
 
Table I shows the linear correlations between the independent variables and the average 
response time. Figure 7 shows selected scatter graphs to demonstrate some of the most 
important correlations identified.  
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 spl con cr aca tcr br all tll rt 
spl 1 0.484 0.191 0.134 0.059 0.379 0.064 0.930 0.736 
con  1 0.019 0.082 0.125 0.119 -0.294 0.331 0.633 
cr   1 0.141 0.347 0.267 0.428 0.332 0.449 
aca    1 0.064 0.208 0.099 0.167 0.148 
tcr     1 0.116 0.011 0.066 0.216 
br      1 0.353 0.475 0.462 
all       1 0.419 0.050 
tll        1 0.623 
rt         1 
 
Table I: Linear correlation coefficients between the measured graph drawing properties, including 
the shortest path length for the task and the average response time over all subjects. Shaded 
cells indicate results that are statistically significant.   
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Figure 7: Scatter plots showing the linear correlations between some of the measured graph 
drawing properties, and the average response time for each graph drawing over all subjects (time 
is measured in seconds).   
 
 
Data Analysis: linear correlations 
 
The results presented above (Table I, Figure 7) use linear correlations, showing the 
relationships between each independent variable and the dependent variable of response 
time. From these linear correlations we observe that: 
 

• The two key variables of crossings (cr) and continuity (con) are almost 
independent.  

• The variability of the data increases with increase in “bendiness”: straight paths 
were generally responded to between two and five seconds while paths with a 
high measure of “bendiness” were responded to in between two and fourteen 
seconds.  

• A similar effect can be seen with the total geometric line length of the shortest 
path: responses to short paths only varied between two and four seconds whereas 
for long path the range was between four seconds and about fourteen seconds. 

 
Data Analysis: multiple regression 
 
However, linear correlations are insufficient for appropriate interpretation, as there are 
many significant correlations between the independent variables themselves (Table I). 
We need to be sure that the internal relationships between the individual independent 
variables are ‘factored out’, so that we can identify the relative contribution of each 
variable, independent of its relationship to the other variables. 
 
We used stepwise multiple regression in two steps. In the first step, we included only the 
shortest path length (spl) into the equation, as we knew that it would have the greatest 
effect, and we first wished to remove the variance in the data that it caused. We did not 
force the number of edge crossings (cr) into the equation at this point (despite the prior 
work by Purchase which concluded that crossings was the most important factor) as we 
wished to determine whether the number of edge crossings really was more dominant 
than the other factors. 
 
In the second step, we put all the remaining independent variables into the equation and 
performed a stepwise analysis. Thus, the most significant independent variable (i.e. the 
variable that explains the most of the variance that has not already been explained by the 
previously entered variables) would be used first, then the next most significant 
independent variable, etc., with the relative order of importance indicated by the left-to-
right ordering of the terms in the equation. Any independent variables that were not 
significant at a 0.05 significance level would not appear in the final multiple regression 
equation. 
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Performing a stepwise multiple regression analysis on the 137 graph drawings, with 
response time as the dependent variable, the following equation relates the response time 
to the shortest path length, the continuity of the shortest path, the number of crosses on 
the shortest path and the number of additional branches from the intermediate nodes on 
the shortest path. The other independent variables were not significant. 
 

rt = -4.970 + 1.390spl + 0.01699con + 0.654cr + 0.295br (1) 
 
When the data has been normalized to eliminate the constant, the following equation 
better allows us to see the relative contributions of the independent variables: 
 

rt =  0.414spl + 0.406con + 0.317cr + 0.172br (2) 
 

An R2 value can indicate the extent to which the dependent variable correlates with the 
independent variables on the left hand side of the equation. The change in the R2 value 
after each independent variable is included in the stepwise regression, indicates the 
relative effect of each of the variables. 
 

R2 after shortest path length (spl) is included: 0.542 
R2 after continuity (con) is included: 0.642 (change = 0.100) 
R2  after crossings (cr) is included: 0.760 (change = 0.118) 
R2 after branches (br) is included: 0.784 (change = 0.024) 

 
 
 
Discussion 
 
As a contribution to graph layout research perhaps our most significant result is the 
finding that path continuity is an important factor in perceiving shortest paths.    
Considering that path length is an intrinsic property of a graph, this makes continuity the 
most important aesthetic property in the set of graphs that we generated.  Simply put, the 
results show that 100 degrees of continuity (bendiness) on a path contribute 1.7 seconds 
to finding the shortest path while each edge crossing contributes 0.65 seconds.  A more 
general way of stating this is to say that the cognitive cost of a single crossing is 
approximately the same as 38 degrees of continuity.  The practical consequence is that it 
may be worth allowing for an occasional crossing in a graph layout if it reduces the 
bendiness of paths.  Using this information it should be possible to construct graph layout 
algorithms that are more effective for analytic tasks where path finding is important. 
More studies are required to determine the robustness of our findings for other than 
spring layout graphs and for different graph sizes, but the theoretical arguments given in 
the introduction would lead us to expect our results to generalize. 
 
In comparing these results with those of Purchase [10], we find that her measurement of 
the total number of edge crossings in the graph drawing is not a significant indicator of 
response time. For shortest path tasks, we have shown here that it is the number of edges 
that cross the shortest path itself that is important, rather than the total number of edges 
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crossings in the drawing. The results of the Purchase experiment, were, however, not 
purely based on a shortest path task: the task of identifying the nodes and edges which, 
when removed, would cause two nodes to be disconnected, were also included in her 
performance data. The effect of the total number of crossings in the whole graph drawing 
may have been more important in these latter two tasks than in the shortest path task. 
 
Perhaps the result that is most difficult to explain result is the negative intercept for the 
regression equation (1).  A simple extrapolation from this would imply that with very 
short straight paths the task can be accomplished in negative time.  Of course, all of our 
results were positive.  A possible explanation is that short straight paths can be perceived 
in roughly constant time and that it is only when the path length exceeds 3 that a 
significant cognitive cost is incurred. This is made more plausible by research that has 
shown that we can count visual objects up to three “at a glance”, that is, in constant time 
[2].  Thus the cognitive cost of counting nodes is incurred only after the length of a path 
exceeds three.  
 
We believe that a major part of our contribution in this paper is the methodology itself.  
In many visualization problems there are similar tradeoffs between different optimization 
criteria. The same experimental methodology described here can be applied to any 
display problem that has similar characteristics and a well-defined elementary task. For 
example, it is common practice to display vector fields using particle traces, but the 
optimal way of doing this is unknown. As with graph layout there are many free display 
parameters to be optimized: the length of the particle traces, their density, and their sizes 
can all be manipulated.  Several tasks are available for optimization: one is the perception 
of vector field strength, another is the prediction of advection (i.e. where in the field a 
dropped particle would end up.) 
 
Two areas of future work can stem from this research: firstly the data presented here 
needs validating to determine whether it truly can be used as a predictive model for 
shortest path tasks in graph drawing. Secondly, the methodology can be applied to a 
variety of other simple visual tasks for which the cognitive cost of differing visual 
features would be of interest. 
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